The impact of clearance in roller bearings on the power contact between its elements


DOI: 10.34759/trd-2020-115-04

Аuthors

Nakhatakyan F. G.

Mechanical Engineering Research Institute of the Russian Academy of Sciences, 4, M. Khariton'evskii per., Moscow, 101990, Russia

Abstract

The presented work studied thoroughly the problem of radial clearance impact on a number of roller bearing loading parameters. It is indicated herewith that the source of the clearance is of no importance. It forms as the result of wearing, or it is a preliminary, i.e. deliberate clearance from technical considerations. The problem was solved analytically, based on the proposed method, employing herewith the author’s technique for determining the pliancy of a “bearing” with a single rolling body.

Two characteristic schemes for a bearing loading with a radial force were considered. The first scheme describes an option, in which the radial force passes through the center of the maximally loaded roller, and the second one touches upon the case when the radial force passes between such rollers.

The problem has been solved with both absence of a radial clearance and its presence. The following parameters were determined: the bearing stiffness (pliancy); the number of load-bearing rollers; the maximum load on the roller, as well as the functions of these parameters on the radial clearance.

The main results of the work are as follows:

– bearing stiffness in the absence of radial clearance in both loading schemes is almost constant;

– with the clearance increase, the stiffness in the second loading scheme decreases more rapidly than in the first scheme, which can cause fluctuations in the rotor systems.

The obtained results can be employed while solving a number of problems, for example, when designing and studying the dynamics of the aircraft turbine mechanisms, or when evaluating the wear and performance of rolling bearings, as well as their durability.

Keywords:

roller bearing, bearing clearance, bearing stiffness, elastic compliance of the bearing, number of loaded rollers

References

  1. Pinegin S.V., Frolov K.V. Mashinovedenie, 1966, no. 2, pp. 36 – 45.

  2. Lundberg G., Sjovall H. Stress and deformation in elastic Contacts, Pub. 4, Division of Solid Mechanics, Chalmers University of Technology, Gothenburg, Sweden, 1958, 47 p.

  3. Hertz H. Uber die Berührung fester elastischer Körper und über die Härte. Verhandlungen des Vereine zur Beforderung des Geverbefleisses, Berlin, 1882, pp. 49.

  4. Harris T.A. Rolling bearing analysis, 5-th edition, Wiley-Interscience Publication, USA, 2006, 258 p.

  5. Pal'mgren A. Sharikovye i rolikovye podshipniki (Ball and roller bearings), Moscow, Mashinostroenie, 1969, 632 p.

  6. Orlov A.V. Problemy mashinostroeniya i nadezhnosti mashin, 2007, no. 5, pp. 71 - 79.

  7. Nakhatakyan F.G. Napryazhenno-deformirovannoe sostoyanie uprugikh elementov zubchatykh mekhanizmov i sooruzhenii pri ikh lineinom i kromochnom kontakte (Stress-strain state of elastic elements of gear mechanisms and structures at their linear and edge contact), Doctor’s thesis, Moscow, IMASh RAN, 2014, 213 p.

  8. Elmidany T. et al. Optimal Interference in Radial Cylindrical Roller Bearings, Journal Engineering Applied Science, 2007, vol. 54, no. 2, pp. 189 - 204.

  9. Harris T.A., Kotzalas M.N. Rolling Bearing Analysis. Vol. 1, CRC Press, Boca Raton, FL, 2007, 360 p.

  10. ANSI/ABMA–9:1990 (R2000). Load Ratings and Fatigue Life for Ball Bearings. American Bearing Manufacturers Association, Washington, DC, 2000. URL: https://webstore.ansi.org/standards/abma/ansiabma1990r2000

  11. Sadeghi F. et al. A Review of Rolling Contact Fatigue, Journal Tribology, 2009, vol. 131, no. 4. URL: https://doi.org/10.1115/1.3209132

  12. Houpert L. An Engineering Approach to Hertzian Contact Elasticity—Part I, Journal Tribology, 2001, vol. 123, pp. 582 - 588. DOI: 10.1115/1.1308043

  13. Poplawski J.V. et al. Advanced Analysis Package for High Speed Multibearing Shaft Systems: COBRA–AHS. Final report, NASA Contract NAS3–00018, 2002.

  14. Timken Aerospace Design Guide for Precision Metric Ball and Cylindrical Roller Bearings, 2011. URL: http://www.timken.com/en-us/products/bearings/productlist/aerospace/Documents/aerospace product design guide.pdf Accessed

  15. Oswald F.B., Zaretsky E.V., Poplawski J.V. Interference Fit Life Factors for Ball Bearings // Tribology Transactions, 2011, vol. 54, no. 1, pp. 1–20. DOI: 10.1080/10402004.2010.512428

  16. Sorokin F.D., Chzhan Kh., Popov V.V., Ivannikov V.V. Trudy MAI, 2018, no. 103. URL: http://trudymai.ru/eng/published.php?ID=100582

  17. Sorokin F.D., Chzhan Kh., Popov V.V., Ivannikov V.V. Trudy MAI, 2019, no. 104. URL: http://trudymai.ru/eng/published.php?ID=102114

  18. Khaustov A.I., Shashkin I.N., Mal'gichev V.A., Nevzorov A.M. Trudy MAI, 2012, no. 50. URL: http://trudymai.ru/eng/published.php?ID=28697

  19. Zubko A.I., Dontsov S.N. Trudy MAI, 2014, no. 74. URL: http://trudymai.ru/eng/published.php?ID=49296

  20. Nakhatakyan F.G. Vestnik mashinostroeniya, 2016, no. 10, pp. 21 - 24.

  21. Nakhatakyan F.G. Problemy mashinostroeniya i avtomatizatsii, 2017, no. 4, pp. 87 - 91.

  22. Reshetov D.N. Detali mashin (Machine Parts), Moscow, Mashinostroenie, 1989, 496 p.

  23. Nakhatakyan F.G. Problemy mashinostroeniya i nadezhnosti mashin, 2011, no. 1, pp. 28 - 32.

  24. Nakhatakyan F.G. Vestnik mashinostroeniya, 2014, no. 2, pp. 24 - 27.

  25. Nakhatakyan F.G. Problemy mashinostroeniya i nadezhnosti mashin, 2011, no. 5, pp. 63 - 67.

  26. Matlin M.M., Mozgunova A.I., Sotnikova A.I., Kostyukov V.A. Izvestiya volgogradskogo gosudarstvennogo tekhnicheskogo universiteta, 2015, no. 12 (175), pp. 80 – 83.

  27. Dzhonson K. Mekhanika kontaktnogo vzaimodeistviya (Mechanics of contact interaction), Moscow, Mir, 1989, 510 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход