Improving the efficiency of a matrix receiver in a complex signal environment based on a fiber optic delay line


DOI: 10.34759/trd-2021-116-08

Аuthors

Podstrigaev A. S.

Saint Petersburg Electrotechnical University “LETI”, 5, str. Professora Popova, Saint Petersburg, 197376, Russia

e-mail: ap0d@ya.ru

Abstract

A matrix receiver and receivers based on it are used to analyze signals over a wide instantaneous bandwidth. However, in a complex signal environment (CSE), the receiver input pulses are overlapped in time. This leads to errors in determining the time-frequency parameters of the pulses. Therefore, the article aims to improve the efficiency of the matrix receiver in the CSE conditions. For this, it is proposed to connect a broadband fiber-optic delay line to the receiver input. A circuit of the delay line with a delay duration tunable in accordance with the duration of the received pulse is considered. Using the example of the electronic environment generated by pulsed radars, an increase in the number of signals processed simultaneously without errors is shown. The increasing is at least 2 times when using one delay line and at least 3 times when using two delay lines. In practice, the signal environment is formed by radio emission sources with different duty cycles. So, the number of simultaneously processed signals can be orders of magnitude higher. An important for practice advantage of the considered technical solution is the possibility of modifying an already existing matrix receiver without significant design changes. Additionally, when increasing the number of simultaneously processed signals stored main advantage of the matrix receiver – high sensitivity as in narrowband scanning receiver with a broad instantaneous bandwidth of operating frequencies, like a multi-channel receiver. The presented approach to increasing the throughput due to one or several delay lines can also be used for other receivers used in broadband analysis tasks.

Keywords:

matrix receiver, fiber optic delay line, complex signal environment, complex electronic environment, wideband analysis

References

  1. Tsui J.B.Y. Microwave receivers with electronic warfare applications, Institution of Engineering and Technology, 2005, 460 p.

  2. Kupriyanov A.I., Sakharov A.V. Radioelektronnye sistemy v informatsionnom konflikte (Electronic systems in information conflict), Moscow, Vuzovskaya kniga, 2003, 528 p.

  3. Len’shin A.V. Bortovye sistemy i kompleksy radioelektronnogo podavleniya (Onboard systems and complexes of electronic suppression), Voronezh, Nauchnaya kniga, 2014, 590 p.

  4. Kupriyanov A.I., Sakharov A.V. Teoreticheskie osnovy radioelektronnoi bor’by (The theoretical foundations of electronic warfare), Moscow, Vuzovskaya kniga, 2007, 356 p.

  5. Perunov Yu.M., Kupriyanov A.I. Radioelektronnaya bor’ba: radiotekhnicheskaya razvedka (Electronic warfare: electronic intelligence), Moscow, Vuzovskaya kniga, 2016, 190 p.

  6. Perunov Yu.M., Matsukevich V.V., Vasil’ev A.A. Zarubezhnye radioelektronnye sredstva. Sistemy radioelektronnoi bor’by (Foreign radio-electronic means. Electronic Warfare Systems), Moscow, Radiotekhnika, 2010, Book 2, 352 p.

  7. Kim J., Utomo D.R., Dissanayake A., Han S.K., Lee S.G. The evolution of channelization receiver architecture: principles and design challenges, IEEE Access, 2017, vol. 5. DOI: 10.1109/ACCESS.2017.2772810

  8. Mel’nikov Yu.P., Popov S.V. Elektromagnitnye volny i elektronnye sistemy, 2009, vol. 14, no. 3, pp. 52 – 61.

  9. Korotkov V.F., Zyryanov R.S. Izvestiya vysshikh uchebnykh zavedenii Rossii. Radioelektronika, 2017, no. 3, pp. 5 – 10. URL: https://re.eltech.ru/jour/article/view/169

  10. Bogdanov S.A., Kupriyanov P.V., Nikolaev S.V., Petrov S.A. Izvestiya vysshikh uchebnykh zavedenii Rossii. Radioelektronika, 2018, no. 3, pp. 85 – 90. URL: https://doi.org/10.32603/1993-8985-2018-21-3-85-90

  11. Filatov V.I., Borukaeva A.O., Berdikov P.G., Kulakov D.V. Trudy MAI, 2019, no. 105. URL: http://trudymai.ru/eng/published.php?ID=104188

  12. Dvornikov S.V., Konyukhovskii V.S., Simonov A.N. Informatsionno-upravlyayushchie sistemy, 2020, no. 1, pp. 63 – 72. DOI: 10.31799/1684-8853-2020-1-63-7

  13. Podstrigaev A.S., Likhachev V.P. Zhurnal radioelektroniki, 2015, no. 2. URL: http://jre.cplire.ru/jre/feb15/13/text.pdf

  14. Podstrigaev A.S. Sovremennye problemy proektirovaniya, proizvodstva i ekspluatatsii radiotekhnicheskikh system, 2016, no. 1 (10), pp. 147 – 150.

  15. Podstrigaev A.S., Likhachev V.P. Patent RU № 2587645, 20.06.2016.

  16. Podstrigaev A.S., Bezzub A.I. Izvestiya vysshikh uchebnykh zavedenii Rossii. Radioelektronika, 2014, no. 4, pp. 37 – 44.

  17. Anokhin V.D., Anokhin E.V., Kil’dyushevskaya V.G., Simokhammed F. Patent RF № 2422845, 27.02.2011.

  18. Aldokhina V.N., Dem’yanov A.V., Gudaev R.A., Byk V.S., Vikulova Yu.M. Trudy MAI, 2017, no. 93. URL: http://trudymai.ru/eng/published.php?ID=80373

  19. Likhachev V.P., Semenov V.V., Veselkov A.A., Demchuk A.A. Materialy XVI Mezhdunarodnoi nauchno -metodicheskoi konferentsii “Informatika: problemy, metodologiya, tekhnologii”, Voronezh, Izd-vo Nauchno-issledovatel’skie publikatsii, 2016, pp. 179  – 184.

  20. Makarenko S.I., Novikov E.A., Mikhailov R.L. Zhurnal radioelektroniki, 2014, no. 10, URL: http://jre.cplire.ru/jre/oct14/3/text.html

  21. Maklashov V.A., Piganov M.N. Trudy MAI, 2020, no. 113. URL: http://trudymai.ru/eng/published.php?ID=118081. DOI: 10.34759/trd-2020-113-07

  22. Yudin V.N., Kamnev E.A. Trudy MAI, 2015, no. 83. URL: http://trudymai.ru/eng/published.php?ID=62310

  23. Zvonarev V.V., Popov A.S., Khudik M.Yu. Trudy MAI, 2019, no. 105. URL: http://trudymai.ru/eng/published.php?ID=104213

  24. Belkin M.E., Kudzh S.A., Sigov A.S. Rossiiskii tekhnologicheskii zhurnal, 2016, no. 1 (10), pp. 4 – 20.

  25. Atkishkin S.F. II Vserossiiskaya nauchno-tekhnicheskaya konferentsiya “Sostoyanie i perspektivy razvitiya sovremennoi nauki po napravleniyu “Informatika i vychislitel’naya tekhnika”, Anapa, Voennyi innovatsionnyi tekhnopolis “ERA”, 2020, vol. 3, pp. 24 – 36.

  26. Fadeenko V.B., Pchelkin G.A., Davydov V.V., Glinuchkin A.P., Beloshapkina O.O., Rud V.Y. Features of construction of the scheme of fiber-optic communication system for transmission of analog signals in the frequency range from 0.135 to 40 GHz, Journal of Physics: Conference Series. IOP Publishing, 2019, vol. 1410, no. 1, pp. 012238. DOI: 10.1088/1742-6596/1410/1/012238

  27. Moroz A.V., Davydov V.V. Fiber-optical system for transmitting heterodyne signals in active phased antenna arrays of radar stations, Journal of Physics: Conference Series. IOP Publishing, 2019, vol. 1368, no. 2, pp. 022024. DOI: 10.1088/1742-6596/1368/2/022024

  28. Ivanov S.I., Lavrov A.P., Saenko I.I., Ivanov D.V., Odnoblyudov M.A., Tsaruk A.A. Elektronika i mikroelektronika SVCh, 2016, vol. 2, pp. 69 – 73. URL: http://mwelectronics.ru/2016/Papers/PDF_2/069-073.pdf

  29. Podstrigaev A.S., Galichina A.A., Lukiyanov A.S. Patent RU № 2716283, 11.03.2020.

  30. Podstrigaev A.S., Smolyakov A.V., Maslov I.V. Probability of Pulse Overlap as a Quantitative Indicator of Signal Environment Complexity, Journal of the Russian Universities. Radioelectronics, 2020, no. 23 (5), pp. 37 – 45. DOI: 10.32603/1993-8985-2020-23-5-37-45

  31. Self A.G., Smith B.G. Intercept time and its prediction, IEE Proceedings F – Communications, Radar and Signal Processing, 1985, vol. 132, no. 4, pp. 215 – 220. DOI: 10.1049/ip-f-1.1985.0052

  32. Egorov N., Kochemasov V. Elektronika: NTB, 2017, no. 5, pp. 136 – 141. DOI: 10.22184/1992-4178.2017.165.5.136.141

  33. Praneetha R, Raju VVSRN, Sreenivasa Rao E., Singh A.K. Simulation and Verification of Digital Delay based Instantaneous Frequency Measurement Technique for Electronic Warfare receivers, International Journal of Recent Advances in Engineering & Technology (IJRAET), 2015, vol. 3, issue 9, pp. 7 – 14.

  34. Tsui J.B.Y., Schamus J.J., Kaneshiro D.H. Monobit receiver, 1997 IEEE MTT-S International Microwave Symposium Digest, IEEE, 1997, vol. 2, pp. 469 – 471.

  35. Karmanov Yu.T., Nikolaev A.N., Zelentsova Ya.G., Povalyaev S.V., Zalyatskaya I.I. Vestnik YuUrGU. Ser. “Komp’yuternye tekhnologii, upravlenie, radioelektronika”, 2014, vol. 14, no. 3, pp. 11 – 18. URL: https://dspace.susu.ru/xmlui/handle/0001.74/4860

  36. Nikolaev A.N. Vestnik YuUrGU. Seriya “Komp’yuternye tekhnologii, upravlenie, radioelektronika”, 2012, vol. 17, no. 35 (294), pp. 30 – 34. URL: https://vestnik.susu.ru/ctcr/article/view/644

  37. Sanderson R.B., Tsui J.B.Y. Digital frequency measurement receiver with bandwidth improvement through multiple sampling of real signals, US Patent № 5099194, 24.03.1992.

  38. McCormick W.S., Tsui J.B.Y. Frequency measurement receiver with means to resolve an ambiguity in multiple frequency estimation, US Patent № 5293114, 08.03.1994.

  39. Beharrell G.P. Digital electronic support measures, EP Patent № 1618407, 17.04.2013.

  40. Krenev A.N., Botov V.A., Goryuntsov I.S., Pogrebnoi D.S., Toporkov V.K. Patent RU № 2516763, 20.05.2014.

  41. Kondakov D.V., Kosmynin A.N., Lavrov A.P. XXIII mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya «Radiolokatsiya, navigatsiya, svyaz’», Voronezh, Izd-vo Velborn, 2017, vol. I, pp. 481 – 486.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход