Telemetric system for parameters control of chemical current sources


DOI: 10.34759/trd-2021-116-10

Аuthors

Balaban I. G.*, Balaban A. L.**

Platov South-Russian State Polytechnic University (NPI), 132, Prosvesheniya str., Novocherkassk, 346428, Russia

*e-mail: i.balaban@inbox.ru
**e-mail: ulapm20@mail.ru

Abstract

The paper outlines the basic principles of building a telemetric system for monitoring the parameters of chemical current sources. A method of non-contact current measurement is proposed for ensure galvanic isolation, a distinctive feature of which is the use of three load resistors (shunts) in order to reduce the error in measuring currents of various magnitudes. The method allows to measure currents up to 120 A. Voltage measurement range: from 0 to +40 V, temperature: from 0 to +100 oC, capacities: from 0 to 511 A⸱h, insulation resistance: from 0 to 5 MOhm. The error in measuring current and capacity is not more than 5%, voltage and temperature is not more than 1%, insulation resistance is not more than 10%. The system operation algorithm is developed and implemented programmatically. The method for protecting telemetry information when monitoring the parameters of chemical current sources (CCS) is developed. Within the framework of the implementation of the strategy of import substitution in the economy of the Russian Federation, in the development of a telemetry system and control of parameters of chemical current sources, only domestic-made electronic components is used.

The research results can be used in the development of CCS condition monitoring devices used for power supply of autonomous devices for which there are no maintenance procedures during operation. The use of such monitoring tools will make it possible to analyze the operation of CCS in order to increase their reliability, determine ways to improve the equipment and establish the causes of its failures.

Keywords:

telemetry, parameter control, chemical current source, method of contactless current measurement, algorithm, protection of telemetric information, import substitution

References

  1. Tabakov E.V., Zinina A.I., Krasavin E.E. Trudy MAI, 2020, no. 111. URL: http://trudymai.ru/eng/published.php?ID=115153. DOI: 10.34759/trd-2020-111-12

  2. Kargin V.A., Skorokhodov Ya.A., Nikolaev D.A., Shovkalyuk A.P. Trudy MAI, 2015, no. 84. URL: http://trudymai.ru/eng/published.php?ID=63145

  3. Shmelev V.V., Manuilov Yu.S. Trudy MAI, 2015, no. 84. URL: http://trudymai.ru/eng/published.php?ID=63140

  4. Okorokova N.S., Prokof'ev M.V., Pushkin K.V., Sevruk S.D., Suvorova E.V., Farmakovskaya A.A. Trudy MAI, 2015, no. 83. URL: trudymai.ru/eng/published.php?ID=61782

  5. Okorokova N.S., Pushkin K.V., Sevruk S.D., Farmakovskaya A.A. Trudy MAI, 2015, no. 80. URL: http://trudymai.ru/eng/published.php?ID=56929

  6. Galkin V.V. Trudy MAI, 2012, no. 60. URL: http://trudymai.ru/eng/published.php?ID=35383

  7. Smith Leonard S. Patent US 4625175 A, 25.11.1983. URL: https://patentimages.storage.googleapis.com/15/ab/ef/e8acadaa300e1c/US4625175.pdf

  8. Makhija Surender K. Patent US 6037778 A, 14.03.2000. URL: https://patentimages.storage.googleapis.com/ab/b4/bb/df9e1ab0ed4956/US6037778.pdf

  9. Anbuku Adnan, Pascoe Philip. Patent US 6924622 B1, 02.08.2005. URL: https://patentimages.storage.googleapis.com/ba/bb/bc/2aa33b96b98e93/US6924622.pdf

  10. Eguchi Yasuhito. Patent US 6064182 A, 16.05.1998. URL: https://patentimages.storage.googleapis.com/d9/a8/9f/d669ab87274b50/US6064182.pdf

  11. Sandifer James R. Slate-of-charge measurement of the litium-carbon monofluoride battery by chronopo-tentiometry, Journal of Applied Electrochemistry, 1986, vol. 16, no. 2, pp. 307 - 308. DOI: 10.1007/bf01093365

  12. Solov'ev V.M. Patent SU 997143 A1, 15.02.1983.

  13. Tuphorn Hans. Patent DE 3516498, 1986, URL: https://patents.google.com/patent/DE3516498A1/en

  14. Maslov M.D. Patent RU 2182388 C1, 10.05.2002.

  15. Fischer D., Carkner S. Patent EP 1065774 B1, 17.12.2008. URL: https://patentimages.storage.googleapis.com/00/84/f3/edc7fddd5f8bdb/EP1065774B1.pdf

  16. Bertness Kevin I. Patent US 5914605 A, 22.06.2002. URL: https://patentimages.storage.googleapis.com/26/17/24/bc0f35b3466eba/US5914605.pdf

  17. Vetter Mike, Miels Torsten. Patent DE 19903239, 1999. URL: https://patents.google.com/patent/DE19903239A1/en

  18. Joseph Patino, Russell L. Patent US 6023150 A, 08.02.2000. URL: https://patentimages.storage.googleapis.com/28/7d/bf/cb2b8eba0ca1e5/US6023150.pdf

  19. Russell D. Moulton Benjamin Chaloner-Gill. Patent US 5483068 A, 09.01.1996. URL: https://patentimages.storage.googleapis.com/9b/4f/4b/92eb3fff9b8a24/US5483068.pdf

  20. Nizhnikovskii E.A. Elektrokhimicheskaya energetika, 2003, vol. 3, no. 2, pp. 80 - 85.

  21. Fedotov D.B., Yalyushev N.I., Maftei A.N., Makovetskii D.V. Elektrokhimicheskaya energetika, 2017, vol. 17, no. 1, pp. 9 – 18. DOI: 10.18500/1608-4039-2017-1-8-18

  22. Breslavets V.P., Lipkin M.S., Barsukov S.G., Sukhoverkhov D.A., Lipkin S.M. Izvestiya vuzov. Elektromekhanika, 2007, no. 1, pp. 55 - 56.

  23. Kholodkov V.P., Lachin V.I., Malina A.K., Gorbatenko N.I., Demidov B.A., Gitis M.Ya., Zverev A.A. Patent SU 1125672 A1, 23.11.1984.

  24. Lachin V.I., Malina A.K., Solomentsev K.Yu. Puti uluchsheniya ekspluatatsionnykh kharakteristik sudovogo elektrooborudovaniya, 1990, no. 500, pp. 13 - 16.

  25. Tsuranov V.A., Vdovin E.V., Glazov A.G., Chizhik N.A. Patent RU 130143 U1, 10.07.2013.

  26. Dzenzerskii V.A., Plaksin S.V., Zhitnik N.E., Shirman O.I. Elektrotekhnicheskie i komp'yuternye sistemy, 2014, no. 14, pp. 131 - 139.

  27. Pimenov Yu.E, Bel'skii V.P., Kostin E.A. Patent SU 1376136 A1, 23.02.1988.

  28. Kukoz F.I., Lyubiev O.N., Chernov V.G., Zatolokina T.Yu. Patent SU 1024996 A1, 23.06.1983.

  29. Malina A.K., Lachin V.I., Kholodkov V.P., Demidov B.A., Poedintsev I.F., Oleinikova L.V. Patent SU 1265634 A1, 23.10.1986.

  30. Klyuchnikov A.V., Kuznetsov A.V., Kuz'minykh N.A., Lysykh A.V. Nauchno-tekhnicheskii vestnik Povolzh'ya. Tekhnicheskie nauki, 2014, no. 1, pp. 93 – 95.

  31. Lachin V.I., Solomentsev K.Yu. Metody i ustroistva kontrolya sostoyaniya elektroenergeticheskikh ob"ektov s diskretno-raspredelennymi parametrami (Methods and devices for monitoring the state of electric power facilities with discretely distributed parameters), Novocherkassk, YuRGTU(NPI), 2012, 342 p.

  32. IEEE Guide for Selection and Use of Battery Monitoring Equipment in Stationary Applications, IEEE Sttandard 1491-2012, 25 June 2012, 50 p.

  33. Godbole R.M., Chaudhari P. and Rane M. Estimating Real Time Lifespan of Nonrechargable Coin Cells by Parameter Measurements, 2019 IEEE 5th International Conference for Convergence in Technology, 2019, pp. 1 - 6. DOI: 10.1109/I2CT45611.2019.9033647

  34. Dineva A., Ferkó K., Székely M., Gyökér G. and Vajda I. High Precision Test System for the Investigation of the Condition of Lithium-ion Batteries, 2018 International Symposium on Fundamentals of Electrical Engineering (ISFEE), 2018, DOI: 10.1109/ISFEE.2018.8742422

  35. Yang Zhenji, Fu Yongjie. Design of the battery resistance measurement system, IEEE 2011 10th International Conference on Electronic Measurement & Instruments, 2011, pp. 240 - 243. DOI: 10.1109/ICEMI.2011.6037806

  36. Yeqin Wang, Yixing Liu. Electronic control system design and test of pure electric vehicle battery management system, 2011 Second International Conference on Mechanic Automation and Control Engineering, 2011, pp. 1289 - 1292. DOI: 10.1109/MACE.2011.5987178

  37. Zenati A., Desprez P., Razik H. and Rael S. A methodology to assess the State of Health of lithium-ion batteries based on the battery's parameters and a Fuzzy Logic System, 2012 IEEE International Electric Vehicle Conference, 2012, pp. 1 - 6. DOI: 10.1109/IEVC.2012.6183268

  38. Cox D.C., Perez-Kite R. Battery state of health monitoring, combining conductance technology with other measurement parameters for real-time battery performance analysis, INTELEC. Twenty-Second International Telecommunications Energy Conferenc, 2000, pp. 342 - 347. DOI:10.1109/INTLEC.2000.884272

  39. Fedotov D.B., Yalyushev N.I., Maftei A.N. Elektrokhimicheskaya energetika, 2013, vol. 13, no. 2, pp. 90 - 95.

  40. Balaban I.G., Balaban A.L., Yufanova Yu.V. Vestnik molodezhnoi nauki Rossii, 2019, no. 2, pp. 31.

  41. Volovich G. Sovremennaya elektronika, Deс. 2004, pp. 26 - 31.

  42. Lachin V.I., Solomentcev K.I., Nguyen Q.U., Yufanova A.L., Balaban I.G. High-speed device of measurement parameters of electropower objects, 2015 International Siberian Conference on Control and Communications (SIBCON), 2015, pp. 1 - 5. DOI: 10.1109/SIBCON.2015.7147120

  43. Lachin V.I., Solomentsev K.Yu., Nguen K.U., Balaban I.G. XXI vek: itogi proshlogo i problemy nastoyashchego PLYuS, 2015, vol. 1, no. 4 (26), pp. 33 – 38.

  44. Lachin V.I., Solomentsev K.Yu., Nguen K.U., Balaban I.G. Patent 154971 RF na poleznuyu model', MPK G01R 27/16, 20.09.2015.

  45. Lachin V.I., Solomentsev K.Yu., Nguen K.U., Balaban I.G. Patent 2585965 RF na izobretenie, MPK G01R 27/00, 10.06.2016.

  46. Korotkova T.I. Trudy MAI, 2015, no. 84. URL: http://trudymai.ru/eng/published.php?ID=63279

  47. Zashchita informatsii. Osnovnye terminy i opredeleniya. GOST R 50922-2006 (Protection of information. Basic terms and definitions. State standart 50922-2006), Moscow, Standarty, 2008, 17 p. URL: http://docs.cntd.ru/document/1200058320

  48. Grusho A.A., Timonina E.E. Teoreticheskie osnovy zashchity informatsii (Theoretical foundations of information security), Moscow, Yakhtsmen, 1996, 187 p.

  49. Mikrokontroller 1887VE4U. URL: https://niiet.ru/product/id

  50. Balaban I.G., Balaban A.L., Yufanova Yu.V. Software development for microcontroller of accumulator batteries telemetry device, Mathematical modeling of processes and systems: papers of the IXth International Youth Scientific-Practical Conference, 2019, pp. 68 - 72. URl: https://www.elibrary.ru/download/elibrary_42526981_91442696.pdf


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход