Pilot-induced oscillations prevention through the nonlinear correction method

DOI: 10.34759/trd-2021-116-14


Zaitceva I. S.

Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, 61, Bolshoy prospect V. O., Saint Petersburg, 199178, Russia

e-mail: juliazaytsev@gmail.com


The purpose of this article is to solve the problem of nonlinear correction device synthesis to prevent the pilot-induced oscillations in a compensatory tracking system. The oscillations discussed in this article introduce a negative phase shift into the system. Thus, a simple and effective solution to this problem consists in embedding a nonlinear correcting device into the control loop. The pilot actions in the compensatory tracking task are aimed at ensuring the cutoff frequency of the closed system, at which the control error will be minimal. The aircraft–pilot system optimization, based on the pilot’s ability to adjust his control performance parameters, is illustrated by the software developed with the MAtLAB/Simulink tools. The goal function is given numerically in the form of the cutoff frequency of the closed-loop pilot-aircraft system, which corresponds to finding maximum system performance. Frequency quality indexes, control accuracy, and pilot model parameters are numerically limited. The pilot-induced oscillations prevention is demonstrated by the example of an unmanned aerial vehicle control system. The human pilot is described by the McRuer “at the cutoff frequency” model. The values of a pilot model and nonlinear corrective device parameters were obtained. Frequency and transient responses of the corrected rate-limited actuator system are presented. Handling qualities of the optimal system were assessed using the bandwidth criterion and the index of the transient process performance. The proposed method can be employed in the flight control system design and flight performance assessment.


pilot-induced oscillations, nonlinear correction, aircraft, optimization, pilot model


  1. McRuer D.T. Pilot induced oscillations and human dynamics behavior. Tec. report no. CR-4683. Washington D.C., USA: NASA, 1995, 96 p. URL: https://ntrs.nasa.gov/citations/19960020960

  2. Efremov A.V. Sistema samolet-letchik. Zakonomernosti i matematicheskie modeli povedeniya letchika (Pilot-vehicle system. Patterns and mathematical models of pilot behavior), Moscow, MAI, 2017, 196 p.

  3. Andrievsky B., Arseniev D.G., Kuznetsov N.V., Zaitceva I.S. Pilot-induced oscillations and their prevention, Proceedings of Cyber-Physical Systems and Control Conf. (St-Petersburg, 2019). Springer, Cham. 2020, vol. 95, pp. 108 - 123. URL: https://link.springer.com/chapter/10.1007%2F978-3-030-34983-7_11

  4. Andrievskii B.R., Zaitseva Yu.S., Kudryashova E.V., Kuznetsov N.V., Kuznetsova O.A. Differentsial'nye uravneniya i protsessy upravleniya, 2020, no. 2, pp. 131 - 172. URL: https://diffjournal.spbu.ru/RU/numbers/2020.2/article.1.8.html

  5. Zaitceva I., Chechurin L. The estimation of aircraft control system stability boundaries by the describing function method, Cybernetics and Physics, 2020, vol. 9, no. 2, pp. 117 - 122. URL: https://doi.org/10.35470/2226-4116-2020-9-2-117-122

  6. Andrievsky B., Kravchuk K., Kuznetsov N.V., Kuznetsova O., Leonov G.A. Hidden oscillations in the closed-loop aircraft-pilot system and their prevention, 6th IFAC Workshop on Periodic Control Systems (Eindhoven, 2016), IFAC-PapersOnLine, 2016, vol. 49 (14), pp. 30 - 35. URL: https://doi.org/10.1016/j.ifacol.2016.07.970

  7. Kuznetsov N.V. Theory of hidden oscillations and stability of control systems, Journal of Computer and Systems Sciences International, 2020, vol. 59 (5), pp. 647 - 668. URL: https://doi.org/10.1134/s1064230720050093

  8. Andrievskii B.R., Kuznetsov N.V., Kuznetsova O.A., Leonov G.A., Mokaev T.N. Trudy SPIIRAN, 2016, no. 49, pp. 5 - 31. URL: https://doi.org/10.15622/sp.49.1

  9. Tran A.T., Sakamoto N., Kikuchi Y., Mori K. Pilot induced oscillation suppression controller design via nonlinear optimal output regulation method, Aerospace Science and Technology, 2017, vol. 68, pp. 278 - 286. URL: https://doi.org/10.1016/j.ast.2017.05.010

  10. Andrievsky B., Kudryashova E.V., Kuznetsov N.V., Kuznetsova O.A. Aircraft wing rock oscillations suppression by simple adaptive control, Aerospace Science and Technology, 2020, vol. 105, pp. 10. URL: https://doi.org/10.1016/j.ast.2020.106049

  11. Gatley S., Postlethwaite I., Turner M., Kumar A. A comparison of rate-limit compensation schemes for PIO avoidance, Aerospace Science and Technology, 2006, vol. 10, no. 1, pp. 37 – 47. URL: https://doi.org/10.1016/j.ast.2005.07.004

  12. Leonov G.A., Andrievskii B.R., Kuznetsov N.V., Pogromskii A.Yu. Differentsial'nye uravneniya i protsessy upravleniya, 2012, no. 3, pp. 36. URL: https://diffjournal.spbu.ru/RU/numbers/2012.3/article.1.1.html

  13. Queinnec I., Tarbouriech S., Biannic J.-M., Prieur C. Anti-Windup algorithms for pilot-induced-oscillation alleviation, AerospaceLab, 2017, Chapter 13, pp. 23. URL: https://hal.laas.fr/hal-01636186/document

  14. Zaitceva I. Nonlinear oscillations prevention in unmmaned aerial vehicle, XI Majorov Int. Conf. on Software Engineering and Computer Systems, Saint-Petersburg, 2019, pp. 8. URL: http://ceur-ws.org/Vol-2590/short3.pdf

  15. Andrievsky B., Kuznetsov N., Kuznetsova O., Leonov G., Seledzhi S. Nonlinear phase shift compensator for pilot-induced oscillations prevention, Proc. of IEEE European Modelling Symposium, Madrid, 2015, pp. 225 - 231. URL: https://doi.org//10.1109/EMS.2015.43

  16. Zel'chenko V.Ya., Sharov S.N. Nelineinaya korrektsiya avtomaticheskikh system (Nonlinear correction of automatic systems), Leningrad, Sudostroenie, 1981, 167 p.

  17. Efremov A.V., Zakharchenko V.F., Ovcharenko V.N., Sukhanov V.L. Dinamika poleta (Flight dynamics), Moscow, Mashinostroenie, 2011, 776 p.

  18. Byushgens G.S., Studnev R.V. Aerodinamika samoleta: dinamika prodol'nogo i bokovogo dvizheniya (Aircraft aerodynamics: longitudinal and lateral movement dynamics), Moscow, Mashinostroenie, 1979, 352 p.

  19. Efremov A.V., Ogloblin A.V., Predtechenskii A.N., Rodchenko V.V. Letchik kak dinamicheskaya Sistema (Pilot as a dynamic system), Moscow, Mashinostroenie, 1992, 336 p.

  20. Efremov A.V., Aleksandrov A.V., Valerov K.A. Trudy MAI, 2017, no. 94. URL: http://trudymai.ru/eng/published.php?ID=81040

  21. McRuer D., Graham D., Krendel E., Reisener W. Human pilot dynamic in compensatory systems: Theory, models, and experiments with controlled element and forcing function variations, Tech. report no. TR-65-15, 1965, 196 p. URL: https://apps.dtic.mil/dtic/tr/fulltext/u2/470337.pdf

  22. Zaitseva Yu.S. Nauchno-tekhnicheskii vestnik ITMO, 2020, vol. 20, no. 2, pp. 200 - 205.

  23. Gus'kov A.A., Spirin A.A., Norinskaya I.V. Trudy MAI, 2020, no. 111. URL: http://trudymai.ru/eng/published.php?ID=115157. DOI: 10.34759/trd-2020-111-14

  24. Mandal T., Gu Y. Analysis of pilot-induced oscillation and pilot vehicle system stability using UAS flight experiments, Aerospace, 2016, vol. 3, no. 2. URL: https://doi.org//10.3390/aerospace3040042

  25. Efremov A.V., Korovin A.A. Trudy MAI, 2012, no. 55. URL: http://trudymai.ru/eng/published.php?ID=30131

  26. Kozyaichev A.N. Trudy MAI, 2018, no. 98. URL: http://trudymai.ru/eng/published.php?ID=90344


mai.ru — informational site MAI

Copyright © 2000-2022 by MAI