Combining the generated radar images with a digital map of the area in on-board systems for operational monitoring of the earth's surface

DOI: 10.34759/trd-2021-117-08


Sentsov A. A.1, Nenashev V. A.1*, Ivanov S. A.2, Turnetskaya E. L.1

1. Saint Petersburg State University of Aerospace Instrumentation, 67, Bolshaya Morskaya str., Saint Petersburg, 190000, Russia
2. Saint-Petersburg State University of Economics, 21, Sadovaya str., Saint-Petersburg, 191023, Russia



The article considers the problem of combining the radar image generated by the onboard equipment of a small aircraft and a digital geographical map of the area, taking into account the heights in real time. To solve this problem, we use methods of correlation-extreme image matching, methods of high-precision on-board monitoring, methods of image matching and processing. To implement a system for the operational display of current location information received by radar equipment from the sides of small aircraft, it is necessary to combine radar and topographic (optical) images into a single information field. To do this, you need to find the appropriate functional transformation in order to overlay the actual data generated in real time on the geographical map. For this purpose, an algorithm for combining the radar image and a digital map of the area based on the correlation-extreme method has been developed. To solve the condition of the algorithm for finding a small aircraft at a point from the confidence square, a criterion for combining four pairs of reference points is proposed. In the case of an insufficient number of reference point pairs, the algorithm provides for the use of a unique pair, which allows you to perform a primary comparison of the contours of characteristic reference points and calculate preliminary estimates of the components of the error vector of navigation data. The software implementation of the above-mentioned algorithms on programmable logic integrated circuits can be performed using parallel calculations, which allows for a mode that is close to real time. The results obtained can be used to update topographic maps of the earth’s surface, for environmental monitoring of areas of high attention, as well as for the implementation of autonomous navigation of aircraft during operational search and rescue operations in areas of emergencies and natural and man-made disasters. The results of the work are adaptable for processing images obtained in different spectral ranges and combining them with a digital map of the area in order to increase the information content of the information obtained.


radar image, digital map of the area, image combination, small aircraft, location information, real-time mode


  1. Wattimena M.G., Nenashev V.A., Sentsov A.A., Shepeta A.P. On-Board Unlimited Aircraft Complex of Environmental Monitoring, 2018 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), Saint Petersburg, 2018. DOI: 10.1109/WECONF.2018.8604382

  2. Toro G.F., Tsourdos A. UAV sensors for environmental monitoring, Belgrade, MDPI, 2018, 661 p.

  3. Isakov V.I., Shepeta D.A. Informatsionno-upravlyayushchie sistemy, 2017, no. 5 (90), pp. 89 - 94. DOI: 10.15217/issn1684-8853.2017.5.89

  4. Nenashev V.A., Sentsov A.A., Shepeta A.P. Formation of radar image the earth's surface in the front zone review two-position systems airborne radar, 2019 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), Saint Petersburg, 2019. DOI: 10.1109/WECONF.2019.8840641

  5. Blaunshtein N.Sh., Sergeev M.B., Shepeta A.P. Prikladnye aspekty elektrodinamiki (Applied aspects of electrodynamics), Saint Petersburg, Agraf+, 2016, 272 p.

  6. Richard Klemm et al. Novel Radar Techniques and Applications. Real Aperture Array Radar, Imaging Radar, and Passive and Multistatic Radar, London, Scitech Publishing, 2017, vol. 1, 952 p. DOI: 10.1049/SBRA512F

  7. Richard Klemm et al. Novel Radar Techniques and Applications. Waveform Diversity and Cognitive Radar, and Target Tracking and Data Fusion, London, Scitech Publishing, 2017, vol. 2, 553 p. DOI: 10.1049/SBRA512G

  8. Zaitsev D.V. Mnogopozitsionnye radiolokatsionnye sistemy. Metody i algoritmy obrabotki informatsii v usloviyakh pomekh (Multi-position radar systems. Methods and algorithms of information processing in the conditions of interference), Moscow, Radiotekhnika, 2007, 96 p.

  9. Nenashev V.A., Sentsov A.A., Shepeta A.P. The Problem of Determination of Coordinates of Unmanned Aerial Vehicles Using a Two-Position System Ground Radar, 2018 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), Saint Petersburg, 2018. DOI: 10.1109/WECONF.2018.8604329

  10. Nenashev V.A., Kryachko A.F., Shepeta A.P., Burylev D.A. Features of information processing in the onboard two-position small-sized radar based on UAVs, SPIE Future Sensing Technologies, Tokyo, Japan, 2019, pp. 111970X-1-111970X-7.

  11. Baklitskii V.K. Korrelyatsionno-ekstremal'nye metody navigatsii i navedeniya (Correlation-extreme methods of navigation and guidance), Tver', TO «Knizhnyi klub», 2009, 360 p.

  12. Nenashev S.A. XXIX Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya «Sovremennye tekhnologii v zadachakh upravleniya, avtomatiki i obrabotki informatsii», Saint Petersburg, GUAP, 2020, pp. 142 - 143.

  13. Podoplekin Yu.F., Shepeta D.A., Makhlin A.M., Kaplin A.Yu. Morskoi vestnik, 2016, no. 2 (58), pp. 77 - 79.

  14. Nenashev V.A., Sinitsyn V.A., Strakhov S.A. IX Obshcherossiiskaya nauchno-prakticheskaya konferentsiya «Innovatsionnye tekhnologii i tekhnicheskie sredstva spetsial'nogo naznacheniya», Saint Petersburg, Baltiiskii gosudarstvennyi tekhnicheskii universitet «Voenmekh», 2017, pp. 351 – 355.

  15. Shepeta A.P., Makhlin A.M., Nenashev V.A., Kryachko A.F. Performance of UWB Signal Detecting Circuits, 2018 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), Saint Petersburg, 2018, DOI: 10.1109/WECONF.2018.8604440

  16. Makhlin A.M., Podoplekin Yu.F., Shepeta A.P. Morskaya radioelektronika, 2016, no. 4 (58), pp. 42 - 47.

  17. Erosh I.L., Sergeev M.B., Solov'ev N.V. Informatsionno-upravlyayushchie sistemy, 2004, no. 4 (11), pp. 2 - 6.

  18. Osipov L.A., Sergeev M.B., Solov'ev N.V., Shepeta A.P. Fundamental'nye issledovaniya, 2004, no. 6, pp. 83 - 85.

  19. Novikov A.I., Efimov A.I. Tsifrovaya obrabotka signalov, 2014, no. 3, pp. 23 - 29.

  20. Borisova I.V. Legkii V.N. Trudy XIV Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii «Aktual'nye problemy elektronnogo priborostroeniya, APEP – 2018», Novosibirsk, Izd-vo NGTU, 2018, vol. 4, pp. 25 – 29.

  21. Kondratenkov G.S., Bykov V.N., Vikent'ev A.Yu.. Radiotekhnika, 2007, no. 8, pp. 99 - 101.

  22. Korneev M.A., Maksimov A.N., Maksimov N.A. Trudy MAI, 2012, no. 58. URL:

  23. Garmash V.N., Petrov Yu.V. Informatsiya i kosmos, 2011, no. 1, pp. 41 – 46.

  24. Purtov I.S., Sincha D.P. Trudy MAI, 2012, no. 52. URL:

  25. Kirdyashkin V.V., Sosulin Yu.G. Uspekhi sovremennoi radioelektroniki, 2010, no. 10, pp. 59 - 71.

  26. Kirpichnikov A.P., Miftakhutdinov D.I., Rizaev I.S. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2015, vol. 18, no. 17, pp. 186 - 189.

  27. Elesina S.I., Lomteva O.A. Tsifrovaya obrabotka signalov, 2015, no. 3, pp. 71 - 76.

  28. Lunev E.M., Neretin E.S., Dyachenko S.A. Dubrovo A.I. Trudy MAI, 2016, no. 86. URL:

  29. Tatarskii B.G., Kirdyashkin V.V. Radiotekhnika, 2009, no. 12, pp. 58 - 63.

  30. Dyachenko S.A. Trudy MAI, 2018, no. 99. URL:

Download — informational site MAI

Copyright © 2000-2022 by MAI