Comparative analysis of information integration architectures of strapdown inertial navigation systems for unmanned aerial vehicles


DOI: 10.34759/trd-2021-117-11

Аuthors

Ermakov P. G.*, Gogolev A. A.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: pavel-ermakov-1998@mail.ru
**e-mail: kirbizz8@yandex.ru

Abstract

The article describes a comparative analysis of separate and loosely coupled architectures of navigation information integration in the case of the following sensors application:

– inertial sensors based on micro-electro-mechanical systems (MEMS) technologies comprising accelerometers measuring proper acceleration, and gyros, measuring rotation speed of a body;

– barometer, measuring air pressure under certain conditions; and, finally,

– GNSS-receiver forming information on position and velocity of the unmanned aerial vehicle (UAV).

Let us pay attention to the fact that the MEMS-based inertial sensors exhibit large errors that can be compensated using data on the position (latitude and longitude) and velocity of the UAV from the GNSS-receiver, as well as on the altitude, being updated by the barometer using hypsometric expression. However, navigation information about the UAV from inertial system is basic since it possesses a high refresh rate and property of independence on the external interference.

In the case of a separate integration architecture, the algorithm of the strapdown inertial navigation system restarts with new initial conditions for the UAV position and velocity from the GNSS-receiver and barometer, respectively. This approach requires minimal hardware and software costs, though the precision of the integrated navigation solution herewith is getting worse with the restart time increasing.

A loosely coupled integration architecture employs the integrated Kalman filter to evaluate the UAV coordinates, velocity and orientation, as well as systematic errors of accelerometers and angular rate sensors. Computed estimates of the inertial system errors are being subtracted from its indications for errors compensation. Thus, this approach is being characterized by high precision and reliability of navigation solution, but, at the same time, tuning integrated Kalman filter is not a trivial task.

Keywords:

simulation modelling, unmanned aerial vehicle, navigation system, separate integration architecture, loosely coupled integration architecture, Kalman filter

References

  1. Zakriya Mohammed, Ibrahim (Abe) M. Elfadel, Mahmoud Rasras. Monolithic Multi Degree of Freedom (MDoF) Capacitive MEMS Accelerometers, Micromachines, 16 November 2018, vol. 9, no. 11. DOI: 0.3390/mi9110602

  2. Gogolev A.A., Gorobinskii M.A. Trudy MAI, 2018, no. 101. URL: http://trudymai.ru/eng/published.php?ID=97029

  3. Krasil'shchikov M.N., Serebryakov G.G. Sovremennye informatsionnye tekhnologii v zadachakh navigatsii i navedeniya bespilotnykh manevrennykh letatel'nykh apparatov (State-of-the-art information technologies in the tasks of navigation and guidance of unmanned maneuverable aerial vehicles), Moscow, FIZMATLIT, 2009, 556 p.

  4. Savel'ev V.M., Antonov D.A. Trudy MAI, 2011, no. 45. URL: http://trudymai.ru/eng/published.php?ID=25497&PAGEN_2=2

  5. Kolosovskaya T.P. Trudy MAI, 2016, no. 88. URL: http://trudymai.ru/eng/published.php?ID=70666

  6. Alex G Quinchia, Gianluca Falco, Emanuela Falletti, Fabio Dovis. A Comparison between different error modeling of MEMS applied to GPS / INS integrated systems, Sensors (Basel), 24 July 2013, vol. 13, no. 3, pp. 9549 – 9588. DOI:10.3390/s130809549

  7. Calogero Cristodaro, Laura Ruotsalainen, Fabio Dovis. Benefits and Limitations of the Record and Replay Approach for GNSS Receiver Performance Assessment in Harsh Scenarios, Sensors, 7 July 2018, vol. 18, no. 7. DOI: 10.3390/s18072189

  8. Liu Hong Dan, Shu Xiong Ying, Li Xi Sheng. Application Of Strongly Tracking Kalman Filter In MEMS Gyroscope Bias Compensation, 6th International Conference on Advanced Materials and Computer Science, ISAMCS 2017. DOI: 10.23977/icamcs.2017.1004

  9. Accelerometer Errors, 9 July 2015. URL: http://kionixfs.kionix.com/en/document/AN012%20Accelerometer%20Errors.pdf

  10. Vlada Sokolović, Goran Dikić, Rade Stančić. Adaptive Error Damping in the Vertical Channel of the Ins/Gps/Baro – Altimeter Integrated Navigation System, Scientific Technical Review, 2014, vol. 64, no. 2, pp. 14 – 20.

  11. Alberto Manero Contreras, Chingiz Hajiyev. Fault Tolerant Integrated Barometric-Inertial GPS Altimeter, 7th European conferences for aeronautics and aerospace science (EUCASS), 2017. DOI: 10.13009 / EUCASS2017 – 62

  12. Tang. Pham Van, Thang Nguyen Van, Duc Anh Nguyen, Trinh Chu Duc. 15 – State Extended Kalman Filter Design for INS / GPS Navigation System, Journal of Automation and Control Engineering, January 2015, vol. 3, no. 2, pp. 109 -114. DOI: 10.12720/joace.3.2.109-114

  13. Beard & McLain. Small Unmanned Aircraft, Princeton University Press, 2012. URL: https://uavbook.byu.edu/doku.php

  14. Yan Chen, Dan Li, Yanhai Li, Xiaoyuan Ma. Use Moving Average Filter to Reduce Noises in Wearable PPG During Continuous Monitoring, EAI International Conference on Wearables in Healthcare, Budapest, Hungary, vol. eHealth 2016, LNICST 181, pp. 193 – 203. DOI: 10.1007/978-3-319-49655-9_26

  15. Mushfiqul Alam, Jan Rohac. Adaptive Data Filtering of Inertial Sensors with Variable Bandwidth, Sensors, February 2015, vol. 15, no. 2, pp. 3282 - 3298. DOI: 10.3390/s150203282

  16. Paola Pierleoni, Alberto Belli, Lorenzo Maurizi, Lorenzo Palma. A Wearable Fall Detector for Elderly People Based on AHRS and Barometric Sensor, Sensors, September 2016, vol. 16, no. 17, pp. 1 - 1. DOI: 10.1109/JSEN.2016.2585667

  17. Wenjiao Xiao, Zgu, Yu. An Unconventional Multiple Low-Cost IMU and GPS-Integrated Kinematic Positioning and Navigation Method Based on Singer Model, Sensors, October 2019, vol. 19, no. 19. DOI: 10.3390/s19194274

  18. Veremeenko K.K., Galai I.A. Trudy MAI, 2013, no. 63. URL: http://trudymai.ru/eng/published.php?ID=36139

  19. Kuznetsov I.M., Pron'kin A.N., Veremeenko K.K. Trudy MAI, 2011, no. 47. URL: http://trudymai.ru/eng/published.php?ID=26966

  20. Vishal Awasthi, Krishna Raj. A Comparison of Kalman Filter and Extended Kalman Filter in State Estimation, International Journal of Electronics Engineering, 2011, vol. 3, no. 1, pp. 67 – 71.

  21. Logah Perumal. Representing Rotation in Simulink using Quaternion, Applied Mathematics & Information Science, 1 April 2014, vol. 8, no. 1L, pp. 267 – 272. DOI: 10.12785/amis/081L34

  22. VectorNav Embedded Navigation Solutions. VN – 100 User Manual. URL: https://www.eol.ucar.edu/system/files/VN100manual.pdf


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход