Application of numerical method in improvement of fuel atomization characteristics of combustion chamber

DOI: 10.34759/trd-2021-117-19


Mingalev S. V.*, Kazimardanov M. G.**

UEC-Aviadvigatel JSC, 93, Komsomolsky Prospect, Perm, 614990, Russia



The article is devoted to the research of approach to getting the drop-diameter distribution, the spray angle and the localization of kerosene flow inside an air-assisted atomizer by simulations performed with the coarse meshes, which are not fine enough to accurately imitate turbulence and with the level of mesh refinement that are not high enough to make the value of drop diameter independent on the mesh cell size. The simulation of fluid in the air-assisted atomizer, which was patented under the number RU2615618, was performed using ANSYS Fluent by the volume of fluid method in two configurations: 1) The five-degree sector on the mesh with minimal sell size 25 μm and 2-time, 3-time and 4-time adaptive mesh refinements at the gas-liquid interface, 2) The full geometry with fuel channels and swirlers on the mesh with minimal sell size 125 μm and 2-time adaptive mesh refinement. The last approach is the main way to simulate the atomization of fuel in air-assisted atomizers in UEC-Aviadvigatel JSC. Comparison of the results reveals that the value of spray angle doesn’t substantially depend on the minimum mesh cell size. Regarding the diameters of droplets, it plunged by more than 70% with the reduction of mesh cell size. Consequently, the simulation of atomization with coarse meshes gives the upper estimate of droplet radius and this result can be of practical use, if the value is so small, that its reduction wouldn’t substantially influence emissions of NOx and the gas temperature after combustion chamber being yielded by the combustion simulation.


air-blast atomizer, computational fluid dynamics, simulation, combustion chamber, aircraft engine, volume of fluid method


  1. Shao C., Luo K., Chai M., Fan J. Sheet, ligament and droplet formation in swirling primary atomization, AIP Advances, 2018, vol. 8 (4), URL:

  2. Sipatov A.M., Karabasov S.A., Gomzikov L.Yu., Abramchuk T.V., Semakov G.N. Vychislitel'naya mekhanika sploshnykh sred, 2013, vol. 6 (3), pp. 346 - 353. URL:

  3. Sipatov A.M., Modorskii V.Ya., Babushkina A.V., Kolodyazhnyi D.Yu., Nagornyi V.S. Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika, 2017, no. 3, pp. 101 - 105. URL:

  4. Zhao W., Cao F., Ning Z., Zhang G., Li Z., Sun J. A computational fluid dynamics (CFD) investigation of the flow field and the primary atomization of the close coupled atomizer, Computers & Chemical Engineering, 2012, vol. 40 (3), pp. 58 – 66. URL:

  5. Li X., Fritsching U. Process modeling pressure-swirl-gas-atomization for metal powder production, Journal of Materials Processing Technology, 2017, vol. 239, pp. 1 – 17. URL:

  6. Ma P., Esclape L., Carbajal S., Ihme M., Buschhagen T., Naik S., Gore J, Lucht R. High-fidelity simulations of fuel injection and atomization of a hybrid air-blast atom-izer, Proc. of the 54th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, San Diego, California, USA, January 4-8, 2016. URL:

  7. Semkin E.V. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2016, vol. 15, no. 4, pp. 150 - 161. URL:

  8. Shao C., Luo K., Yang Y., Fan J. Detailed numerical simulation of swirling primary atomization using a mass conservative level set method, International Journal of Multiphase Flow, 2016, vol. 89, pp. 57 - 68. URL:

  9. Shao C., Luo K., Yang J., Chen S., Fan J. Accurate level set method for simulations of liquid atomization, Chinese Journal of Chemical Engineering, 2015, vol. 23 (4), pp. 597 – 604. DOI:

  10. Desjardins O., McCaslin J, Owkes M, Brady P. Direct numerical and large-eddy simulation of primary atomization in complex geometries, Atomization and Sprays, 2013, vol. 23 (11), pp. 1001 – 1048. URL:

  11. Simon H. New Insights in the Primary Breakup Process of Prefilming Airblast Atomizers by SPH Predictions, Proc. of ICLASS 2018: 14th International Conference on Liquid Atomization and Spray Systems, University of Illinois, Chicago, USA, July 22-26, 2018. URL:

  12. Grech N., Mehdi A., Zachos P.K., Pachidis V., Singh R. Effect of Combustor Geometry on Performance of Airblast Atomizer Under Sub-Atmospheric Conditions, Engineering Applications of Computational Fluid Mechanics, 2012, vol. 6 (2), pp. 203 – 213. URL:

  13. Batalov V.G., Stepanov R.A., Sukhanovskii A.N. Trudy MAI, 2014, no. 76. URL:

  14. Lanskii A.M., Lukachev S.V., Matveev S.G. Trudy MAI, 2012, no. 57. URL:

  15. Chaussonnet G., Vermorel O., Riber E., Cuenot B. A new phenomenological model to predict drop size distribution in Large-Eddy Simulations of airblast atomizers, International Journal of Multiphase Flow, 2016, vol. 80, pp. 29 - 42. URL:

  16. Holz S., Chaussonnet G., Gepperth S., Koch R., Bauer H.J. Comparison of the Primary Atomization Model PAMELA with Drop Size Distributions of an Industrial Prefilming Airblast Nozzle, In Proc. of the 27th Annual Conference on Liquid Atomization and Spray Systems, Brighton, UK, 4–7 September 2016. URL:

  17. E A.I., Ayedh Al., Zhiyin Y. Numerical study of the combustion of conventional and biofuels using reduced and advanced reaction mechanisms, Thermal Science, 2015, vol. 19 (6), pp. 2171 - 2184. URL:

  18. Sauer B., Sadiki A., Janicka J. Numerical Analysis of the Primary Breakup Applying the Embedded DNS Approach to a Generic Prefilming Airblast Atomizer, The Journal of Computational Multiphase Flows, 2014, vol. 6 (3), pp. 179 - 192. URL:

  19. Warncke K., Gepperth S., Sauer, B. Sadiki A., Janicka J., Koch R., Bauer H.-J. Experimental and numerical investigation of the primary breakup of an airblasted liquid sheet, International Journal of Multiphase Flow, 2017, vol. 91, pp. 208 - 224. URL:

  20. Mingalev S., Inozemtsev A., Gomzikov L., Sipatov Al., Abramchuk T. Simulation of Primary Film Atomization in Prefilming Air-assisted Atomizer Using Volume-of-Fluid Method, Microgravity Science and Technology, 2020, vol. 32, pp. 465 – 476. DOI:10.1007/s12217-020-09782-3

  21. Kazimardanov M., Zagitov R. Numerical Simulation of Kerosene Atomization in Injector of a Gas Turbine Engine, AIP Conference Proceedings, 2019, vol. 2125, URL:

  22. Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer, ASME V&V 20-2009, New York, ASME, 2009, 100 p.
    23. Nagornyi V.S., Kolodyazhnyi D.Yu., Sipatov A.M., Khryashchikov M.S., Semakov G.N. Patent 2615618 SU, no. 10, 05.04.2017.

  23. Kutsenko Yu.G. Metodologiya proektirovaniya maloemissionnykh kamer sgoraniya gazoturbinnykh dvigatelei na osnove matematicheskikh modelei fiziko-khimicheskikh protsessov (Methodology of Low-emission Combustion Chamber Development on the Basis of Simulation of Physicochemical Processes), Doctor’s thesis, Perm', PNIPU, 2010, 298 p.

  24. Mingalev S.V., Inozemtsev A.A., Gomzikov L.Y., Sipatov A.M., Abramchuk T.V. The Numerical Simulation of the Atomization of a Kerosene Film in an Air-Assist Atomizer with a Prefilmer, Journal of Applied Mechanics and Technical Physics, 2020, vol. 61, pp. 1059 - 1067. URL:

Download — informational site MAI

Copyright © 2000-2022 by MAI