Investigation of the fault tolerance of the optoelectronic navigation system of an autonomous spacecraft
DOI: 10.34759/trd-2021-117-20
Аuthors
*, **Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia
*e-mail: algoll949@mail.ru
**e-mail: arichnyak@mail.ru
Abstract
The relevance of the topic of the article is due to the need to increase the autonomy of solving the navigation problem of promising spacecraft with a long period of active existence in the conditions of uncertainty of the existing disturbing effects of outer space. A promising way to combat these disturbing influences is the development and manufacture of fault-tolerant onboard systems of spacecraft, including onboard systems designed to solve problems of autonomous navigation.
The article provides a solution to the problem, the essence of which is to study the fault tolerance of the optical-electronic navigation system of the spacecraft, which can be used as an additional source of autonomous determination of the parameters of its orbital motion. The study of fault tolerance is carried out on the example of an optoelectronic navigation system of an autonomous spacecraft with a long active life, based on the zenith navigation method and containing two astronomical sensors, a local vertical builder, an altimeter and an onboard computer.
The main results of the work are the proposed indicators that allow us to assess the fault tolerance of the onboard systems of spacecraft. Using the method of mathematical modeling, the article shows the possibility of quantifying the fault tolerance of an on-board optoelectronic navigation system. The classification of fault tolerance indicators of onboard systems of spacecraft is developed, the ratio for calculating the conditional fault tolerance indicator is obtained, which allows us to evaluate the fault tolerance at known values of the failure probabilities of the components of the onboard system, and quantitative estimates of the fault tolerance indicators of the optoelectronic navigation system of an autonomous spacecraft are given.
The results obtained in the article are based on methods for assessing the fault tolerance of technical systems for various purposes, the theory of autonomous navigation of spacecraft, and methods for processing the results of navigation measurements.
The results of the conducted research can be used when it is necessary to justify the appearance of onboard systems of spacecraft with a long active life and the requirements for the fault tolerance of their optoelectronic navigation system, as well as when evaluating and monitoring fault tolerance indicators during the development and operation of these systems.
Keywords:
spacecraft, onboard optoelectronic navigation system, fault tolerance, influencing factors, single failure of a component part of the systemReferences
-
Belousov Yu.A. Aviakosmicheskoe priborostroenie, 2004, no. 11, pp. 17 - 24.
-
Kofman M.M., Paramonov P.P., Sabo Yu.I. Aviakosmicheskoe priborostroenie, 2005, no. 8, pp. 25 - 31.
-
Firsov G.V. Trudy MAI, 2006, no. 25. URL: http://trudymai.ru/eng/published.php?ID=34068
-
Viktorova V.S., Lubkov I.B., Stepanyants A.S. Analiz nadezhnosti otkazoustoichivosti vychislitel'nykh system (Analysis of the reliability of fault-resistant computing systems), Moscow, IPU RAN, 2016, 117 p.
-
Avakyan A.A., Romanenko Yu.A. Naukograd Nauka Proizvodstvo Obshchestvo, 2016, no. 1, pp. 35 - 38.
-
Dektyarev A.R., Kiselev S.K. Elektrotekhnicheskie i informatsionnye kompleksy i sistemy, 2016, vol. 12, no. 1, pp. 89 - 99.
-
Shubinskii I.B. Nadezhnye otkazoustoichivye informatsionnye sistemy. Metody sinteza (Reliable fail-safe information systems. Synthesis methods), Moscow, Zhurnal Nadezhnost', 2016, 546 p.
-
Zemlyakov S.D., Rutkovskii V.Yu., Silaev A.V. Avtomatika i telemekhanika, 1996, no. 1, pp. 3 - 20.
-
Qin J. et al. Reliability analysis of avionics in the commercial aerospace industry, Journal of the Reliability Analysis Center, 2005, pp. 1 - 6.
-
Kirilin A.N., Akhmetov R.N., Sollogub A.V., Makarov V.P. Metody obespecheniya zhivuchesti nizkoorbital'nykh avtomaticheskikh KA zondirovaniya Zemli: matematicheskie modeli, komp'yuternye tekhnologii (Methods for ensuring the survivability of low-orbit automatic Earth sensing spacecraft: mathematical models, computer technology), Moscow, Mashinostroenie, 2010, 346 p.
-
Tyugashev A.A. Nadezhnost' i kachestvo system, 2016, no. 4 (16), pp. 106 - 112. DOI: 10.21685/2307-4205-2016-4-15
-
Zavedeev A.I. Mekhatronika, avtomatizatsiya, upravlenie, 2018, no. 10, pp. 664 - 672. DOI: 10.17587/mau.19.664-672
-
Syrov A.S. Proektirovanie i ispytaniya bortovykh sistem upravleniya (Designing and testing on-board control systems), Moscow, Izd-vo MAI, 2011, 344 p.
-
Klyushnikov V.Yu., Kuznetsov I.I., Osadchenko A.S. Aktual'nye voprosy proektirovaniya avtomaticheskikh kosmicheskikh apparatov dlya fundamental'nykh i prikladnykh nauchnykh issledovanii: sbornik trudov konferentsii, Khimki, NPO im. S.A. Lavochkina, 2017, pp. 317 - 328.
-
Ovchinnikov M.Yu., Ivanov D.S., Roldugin D.S., Tkachev S.S., Karpenko S.O. Mekhanika, upravlenie i informatika, 2013, no. 1 (13), pp. 132 - 145.
-
Glinskii V.A., Zavedeev A.I., Moiseenko V.N. Aviakosmicheskoe priborostroenie, 2002, no. 4, pp. 35 - 38.
-
Rumyantsev G.N., Lyashenko A.V., Ignat'ev A.A., Proskuryakov G.M., Pozdnyakov M.V. Geteromagnitnaya mikroelektronika, 2016, no. 21, pp. 20 - 33.
-
Anshakov G.P., Golyakov A.D., Petrishchev V.F., Fursov V.A. Avtonomnaya navigatsiya kosmicheskikh apparatov (Autonomous navigation of spacecraft), Samara, Gosudarstvennyi nauchno-proizvodstvennyi raketno-kosmicheskii tsentr «TsSKB-Progress», 2011, 486 p.
-
Porfir'ev L.F., Smirnov V.V., Kuznetsov V.I. Analiticheskie otsenki tochnosti avtonomnykh metodov opredeleniya orbit (Analysis of the accuracy of autonomous orbiting methods), Moscow, Mashinostroenie, 1987, 280 p.
-
Polosukhina K.A. Trudy MAI, 2010, no. 38. URL: http://trudymai.ru/eng/published.php?ID=14166
-
Korovin A.V., Ustyuzhanin D.A. Trudy MAI, 2012, no. 51. URL: http://trudymai.ru/eng/published.php?ID=29142
Download