Stress-strain analysis of aircraft airframe parts from composite materials based on scanning and global-local problem solution


DOI: 10.34759/trd-2021-118-05

Аuthors

Tolstikov V. G.*, Pykhalov A. A.**

Irkutsk National Research Technical University, 83, Lermontov str., Irkutsk, 664074, Russia

*e-mail: tolstikovvg@mail.ru
**e-mail: pikhalov_aa@irgups.ru

Abstract

The article considers mathematical modeling of laminated polymer composite materials, being built basing on scanning parts with a computer tomograph with further mathematical processing of the obtained information and finite element models building. The main aspect of the work consists in determining the degree of the internal defects impact on the strength of the manufactured part by the results of the analysis of the individual finite element model.

The computed tomography technology allows determining the type of defect, its size and location relative to the base surfaces of the part under study. The resulting raster model is the scan data output. The well-ordered packet of raster images with the defect in one of the of coordinates system axis direction of the object under study is being formed. The subsequent step consists in creating a wireframe model of the defect zone. The step consists of the following stages:

  • determining the coordinate system of the image package;
  • binarization of the images packet;
  • detecting defect contours in each image;
  • defining anchor points on a contour;
  • vectorization of defect contours by the spline interpolation method;
  • combining vectorized contours into a wireframe model.

Further, the superimposition of the wireframe model of the defect on the 3D finite elements model of the part’s zone with the identified defect is being performed. The subsequent properties transformation of the finite elements that have fallen into the defect zone consists in the change (decrease) in the elastic properties of the material.

Detailed analysis of the stress-strain state of aircraft structures from composite materials may significantly increase the computational costs. To solve this problem, this article suggests employing the global-local analysis of the elastic theory. This will allow considering the defect zone obtained after scanning with sufficient accuracy, without the part finite element model complication.

The presented approach application allows determining the suitability of the parts from laminated polymer composite materials with a high degree of adequacy, which consists in determining the real defects, revealed while the scanning process with the computed tomography, impact on the strength of the part.

the effect on strength the part real defects identified in the process of scanning on a computed tomography.

Keywords:

composite materials structure, computed tomography, finite element model, wireframe model

References

  1. Golovan V.I., Dudar’kov Yu.I., Levchenko E.A., Limonin M.V. Trudy MAI, 2020, no. 110. URL: http://trudymai.ru/eng/published.php?ID=112830. DOI: 10.34759/trd-2020-110-5

  2. Dudar’kov Yu.I., Levchenko E.A., Limonin M.V., Shevchenko A.V. Trudy MAI, 2019, no. 106. URL: http://trudymai.ru/eng/published.php?ID=105636

  3. Boichuk A.S., Generalov A.S., Dalin M.A., Dikov I.A. X Vserossiiskaya konferentsiya «TestMat. Osnovnye tendentsii, napravleniya i perspektivy razvitiya metodov nerazrushayushchego kontrolya v aerokosmicheskoi otrasli»: sbornik trudov. Moscow, VIAM, 2018, pp. 18 — 31.

  4. Boitsov B.V., Vasil’ev S.L., Gromashev A.G., Yurgenson S.A. Trudy MAI, 2011, no. 49. URL: http://trudymai.ru/eng/published.php?ID=28061&PAGEN_2=2

  5. Murashev V.V., Rumyantsev A.F. Kontrol’. Diagnostika, 2007, no. 4, pp. 23 — 31.

  6. Pykhalov A.A., Zyong V.L., Tolstikov V.G. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mekhanika, 2018, no. 4, pp. 106 — 118. DOI: 10.15593/perm.mech/2018.4.10

  7. Zenkevich O.C. Metod konechnykh elementov v tekhnike (Finite element method in engineering), Moscow, Mir, 1975, — 542 s.

  8. Bate K., Vil’son E. Chislennye metody analiza i metod konechnykh elementov (Numerical methods in finite element analysis), Moscow, Stroiizdat, 1982, 448 p.

  9. Gallager P. Metod konechnykh elementov. Osnovy (Finite element analysis. Fundamentals), Moscow, Mir, 1984, 431 p.

  10. Carrera E., Pagani A., Silva G. Global-Local Structural Analysis Of Composite Wings, 31st Congress of the International Council of Aeronautical Sciences (ICAS), Belo Horizonte, September 09-14, 2018.

  11. Yashutin A.G., Surenskii E.A. Trudy MAI, 2014, no. 74. URL: http://trudymai.ru/eng/published.php?ID=49151

  12. Zyong V.L., Pykhalov A.A. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie, 2017, no. 2 (54), pp. 30 — 39.

  13. Zyong V.L., Pykhalov A.A., Tatarnikova C.P. Sovremennye tekhnologii. Sistemnyi analiz. Modelirovanie, 2017, no. 3 (55), pp. 10 — 18.

  14. Grishin V.I., Dzyuba A.S., Dudar’kov Yu.I. Prochnost’ i ustoichivost’ elementov i soedinenii aviatsionnykh konstruktsii iz kompozitsionnykh materialov (Strength and stability of aircraft structures’ elements and joints from composite materials), Moscow, Fizmatlit, 2013, 272 p.

  15. Bekhmet’ev V.I. Nauka bez granits, 2017, no. 5 (10), pp. 154 — 161.

  16. Nepomnyashchaya P.K., Karikh V.P. Yuzhno-Sibirskii nauchnyi vestnik, 2015, no. 4 (12), pp. 76 — 79.

  17. Garcea S.C., Wang Y., Withers P.J. X-ray computed tomography of polymer composites, Composites Science and Technology, 2017, vol. 156, pp. 305 — 319. DOI:10.1016/j.compscitech.2017.10.023

  18. Liu R., Sancaktar E. Identification of crack progression in filled rubber by micro X-ray CT-scan, International Journal of Fatigue, 2018, vol. 111, pp. 144 — 150.

  19. Pykhalov A.A., Zyong V.L. Svidetel’stvo o gosudarstvennoi registratsii programmy dlya EVM 2017661241, 06.10.2017.

  20. Pykhalov A.A., Zyong V.L. Svidetel’stvo o gosudarstvennoi registratsii programmy dlya EVM 2018615239, 03.05.2018.


    Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход