Options analysis of navigation systems for the Moon


DOI: 10.34759/trd-2021-118-09

Аuthors

Dmitriev A. O.*, Moscatin'ev I. V.**, Nesterin I. M.***, Sysoev V. K.****

Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

*e-mail: dao@laspace.ru
**e-mail: miv@laspace.ru
***e-mail: nesterin@laspace.ru
****e-mail: SysoevVK@laspace.ru

Abstract

Conducting a detailed study of the Moon and its further development should be based on a high-precision positioning system for objects located on its surface and in the circumlunar space. Currently, many space agencies and research centers are developing navigation systems for the Moon. The proposed projects stay at various stages from concepts to experimental work. Thus, conducting detailed analysis of these projects is an up-to-date task.

Basic types of navigation systems, suggested to development by Russian and foreign researches, were outlined following the results of the analysis. Certainly, there is a number of concepts, such as navigation by pulsars, but they are even more complicated in realization and of less accuracy than those under consideration.

These are, in the first place, radio-navigational systems, which can be conditionally split into three basic groups:

— The systems based on constant contact with terrestrial systems;

— Navigation systems autonomous from the Earth navigation (i.e., those not employing the Earth GLONASS, GPS, etc. as a support) with lunar reference points;

— Autonomous systems without reference lunar based points.

All types of the systems have both their advantages and disadvantages: this is either the presence of a mandatory binding to the Earth (hence, there are delays in receiving any kinds of signals at such a distance), or either a large number of spacecraft or a complex lunar based segment.

Systems with gravitational measurements and the artificial intelligence application cannot fully perform the tasks of global lunar navigation.

Thus, we believe that the proposed lunar optical navigation system is up-to-date and solves many of the problems and shortcomings of the above-mentioned modern projects and proposals in the field of navigation on the Moon.

Keywords:

Moon, navigation, planetfall station, spacecraft

References

  1. Chebotarev V.E., Kuzymov V.I., Konyaev A.V. Kosmicheskie apparaty i tekhnologii, 2018, vol. 24, no. 2, pp. 79 — 82.

  2. Varaksina N.A. Sozdanie navigatsionnoi opornoi seti na poverkhnosti Luny v fundamental’noi sisteme koordinat (Navigation reference network creating on the lunar surface in the fundamental coordinate system). Doctor’s thesis. Moscow, MGU im. M.V. Lomonosova, 2013, 205 p.

  3. Fortezzo С.M., Spudis P.D., Harrel S.L. Release of the digital unified global geologic map of the Moon at 1:5 000 000 scale, 51st Lunar and Planetary Science Conference, 2020. URL: https://www.hou.usra.edu/meetings/lpsc2020/pdf/2760.pdf

  4. Bagrov A.V., Vyatlev P.A., Sergeev D.V., Sysoev V.K. Vestnik NPO im. S.A. Lavochkina, 2012, no. 5 (16), pp. 47 — 53.

  5. Zhukov B.S., Polyanskii I.V., Zhukov S.B. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2017, vol. 14, no. 2, pp. 24 — 35. DOI: 10.21046/2070-7401-2017-14-2-24-35

  6. Bilodeau V.S., Clerc S., Drai R., de Lafontaine J. Optical Navigation System Pin-Point Lunar Landing, IFAC Proceedings, 2014, vol. 47, issue 3, pp. 535 — 542. DOI: 10.3182/20140824-6-ZA-1003.01693

  7. Mark J. Verweld Relative Optical Navigation for a Lunar Lander Mission, Advances Aerospace Guidance, Navigation and Control, 2013, pp. 661 — 679.

  8. Kaplev C.A., Kremenetskii N.O., Ignatovich E.I., Bolkunov A.I. Polet, 2019, no. 11, pp. 3 — 19.

  9. Gordienko E.S., Ivashkin V.V., Simonov A.V. Vestnik NPO im. S.A. Lavochkina, 2016, no. 4, pp. 40 — 54.

  10. Chebotarev V.E., Kudymov V.I., Zvonar’ V.D., Vnukov A.A., Vladimirov A.V. Issledovaniya naukograda, 2014, no. 4 (10), pp. 14 — 20.

  11. Shargorodskii V.L., Kosenko V.E., Sadovnikov M.A., Chubykin A.A., Moklyak V.I. Vestnik Cibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. M.F. Reshetneva, 2013, no. 6 (52), pp. 50 — 55.

  12. Capuano V., Botteron C., Ledere J., Han J. et al. Feasibility s truly of GNSS as navigation system to reach the Moon, Acta Astronautica, 2015, vol. 116, pp. 186 — 201. URL: https://doi.org/10.1016/j.actaastro.2015.06.007

  13. Mikrin E.A., Mikhailov M.B., Orlovskii I.V., Rozhkov S.N., Semenov A.S., Krasnopol’skii I.A. Giroskopiya i navigatsiya, 2019, vol. 27, no. 3 (106), pp. 3 — 17. DOI: 10.17285/0869-7035.0005

  14. Detepaut A., Giordano R. et al. Use of GNSS for lunar missions and plans for lunar in-orbit development, Advances in Space Research, 2020, vol. 66, no.12, pp. 2739 — 2756. DOI: 10.1016 / j acr 9090 05.018

  15. Li Xie, Peng Yang, Thomas Yang, Ming Li. Dual-EKF-Based Real-Time celestial Navigation for Lunar Rover, Mathematical Problems in Engineering, 2012. URL: https://doi.org/10.1155/2012/578719

  16. Slesarenok S.V., Shepet’ I.P., Rubinov V.I., Titov Yu.P. Trudy MAI, 2016, no. 86. URL: http://trudymai.ru/eng/published.php?ID=66381

  17. Bagrov A.B., Dmitriev A.O., Leonov B.A. et al. Vestnik NPO im. S.A. Lavochkina, 2017, no. 4 (38), pp. 5 — 10.

  18. Bagrov A.V., Dmitriev A.O., Leonov V.A. et al. Kosmicheskaya tekhnika i tekhnologii, 2019, no. 4 (27), pp. 12 — 26. DOI: 10.33950/spacetech-2308-7625-2019-4-12-26

  19. Dmitriev A.O., Bagrov A.V., Sysoev V.K., Polyakov A.A. XLIV Akademicheskie chteniya po kosmonavtike, posvyashchennye pamyati akademika S.P. Koroleva: sbornik tezisov konferentsii, Moscow, MGTU im. N.E. Baumana, 2020, pp. 281 — 282.

  20. M. Eubanks, Ch.F. Radley, W.P. Blasé. Local navigation in lunar polar regions with compass, lunacell and mobile ad HOC Geodesy, Lunar and Planetary Science Conference, Houston, TX, USA, 2020, vol. 51.

  21. Rodchenko V.V., Sadretdinova E.R., Zagovorchev V.A., Lugovtsov I.V. Trudy MAI, 2012, no. 59. URL: http://trudymai.ru/eng/published.php?ID=35254

  22. Maria T. Zuber, David E. Smith, Michael M. Watkins. et al. Gravity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission, Science, 2013, vol. 339, issue 6120, pp. 668 — 671. DOI: 10.1126/science.1231507

  23. Afonin A.A., Sulakov A.S., Yamashev G.G., Mikhailin D.A., Mirzoyan L.A., Kurmakov D.V. Trudy MAI, 2013, no. 66. URL: http://trudymai.ru/eng/published.php?ID=40812


    Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход