Features of classification of the underlying earth surfaces according to the characteristics of echo signals in on-board radars


DOI: 10.34759/trd-2021-118-11

Аuthors

Nenashev V. A.

Saint Petersburg State University of Aerospace Instrumentation, 67, Bolshaya Morskaya str., Saint Petersburg, 190000, Russia

e-mail: nenashev@guap.ru

Abstract

Today, on-board radar monitoring systems are actively used as devices for observing the earth’s surface. They have great practical advantages. The main of these advantages are:

— implementation of monitoring of the earth’s surface in unfavorable weather conditions and at any time of the day, as well as in various seasonal conditions;

— sufficiently long range of action;

— high accuracy in determining the coordinates of the detected physical objects and outlines of the edges of the underlying surfaces;

— the ability to cover large areas of the monitored areas in a short period of time;

— implementation of the mode in real time, etc.

The work defines, analyzes and forms the corresponding parameters of echo signals, the space of information features of characteristics. The most informative classification parameters have been identified, the main of which is the radar cross section (RCS) value. In this case, the selected parameters of echo signals are stable under the influence of various destructive influences on the signal during its propagation.

The distribution laws of Weibull, Rayleigh, Rayleigh-Rice, Hoyt, etc. are used as a model for the fluctuations of the envelope of the earth’s surface echoes, as well as the log-normal law and the K-distribution as the equivalent of the sea surface echo.

In this work, an algorithm for the classification of one information attribute, which is the RCS, has been developed. The block diagram of the algorithm is presented. The classification algorithm is implemented on the basis of comparing the RCS value taken from the corresponding base of classification features of objects and underlying surfaces with the RCS value calculated from the received values of the echo signal amplitudes observed in the receiver strobe of the onboard radar.

Through the use of on-board radar equipment, search, detection and classification of underlying surfaces is carried out, which makes it possible to perform these tasks regardless of weather, daily and seasonal conditions. In this case, the reliability of the classification algorithm depends only on the intrinsic fluctuations of the evaluated characteristics of the echo signals. The result of the work is the development of an algorithm for the classification of underlying surfaces by RCS.

Keywords:

classification, underlying surface, echo signal, airborne radar systems, radar cross section, space of information signs

References

  1. Sentsov A.A., Nenashev V.A., Ivanov S.A., Turnetskaya E.L. Trudy MAI, 2021, no. 117. URL: http://trudymai.ru/eng/published.php?ID=156227. DOI: 10.34759/trd-2021-117-08

  2. Lunev E.M., Neretin E.S., Dyachenko S.A. Dubrovo A.I. Trudy MAI, 2016, no. 86. URL: http://trudymai.ru/eng/published.php?ID=66366

  3. Shepeta A.P., Nenashev V.A. Accuracy characteristics of object location in a two-position system of small onboard radars, Information and Control Systems, 2020, no. 2, pp. 31 — 36. DOI: 10.31799/1684-8853-2020-2-31-36

  4. Dyachenko S.A. Trudy MAI, 2018, no. 99. URL: http://trudymai.ru/eng/published.php?ID=91966

  5. Keith Ward, Robert Tough, Simon Watts. Sea Clutter: Scattering, the K distribution and radar performance, Electromagnetics and Radar, 2007, no.17 (2), pp. 233 — 234. DOI: 10.1080/17455030601097927

  6. Cheng K. Lee, Miin-Jye Wen. A Multivariate Weibull Disitribution, Pakistan Journal of Statistics and Operation Research, 2010, no. 5, pp. 55 — 66. DOI: 10.18187/pjsor.v5i2.120

  7. Isakov V.I., Podoplekin Yu.F., Shepeta D.A. Morskoi vestnik, 2016, no. 3 (59), pp. 49 — 50.

  8. Isakov V.I., Shepeta D.A., Nenashev V.A. Algorithm for modeling location signals reflected from the edge of various underlying surfaces, 2020 Wave Electronics and its Application in Information and Telecommunication Systems, 2020, pp. 9131550. DOI: 10.1109/WECONF48837.2020.9131550

  9. Isakov V.I., Shepeta D.A. Informatsionno-upravlyayushchie sistemy, 2017, no. 5, pp. 89 — 94. DOI: 10.15217/issn1684-8853.2017.5.89

  10. Davidchuk A.G., Podoplekin Yu.F., Shepeta A.P. Morskaya radioelektronika, 2018, no. 2 (64), pp. 24 — 28.

  11. Smirnov V.V., Nikolaev S.V. Passivnye pomekhi: monografiya (Passive clutter), Saint Petersburg, BGTU, 2008, 400 p.

  12. Blaunshtein N.Sh., Sergeev M.B., Shepeta A.P. Prikladnye aspekty elektrodinamiki (Applied aspects of electrodynamics), Saint Petersburg, Agraf+, 2016, 272 p.

  13. Lee S., Jha D., Agrawal A. Parallel Deep Convolutional Neural Network Training by Exploiting the Overlapping of Computation and Communication, 2017 IEEE 24th International Conference on High Performance Computing, Jaipur, 2017, pp. 183 — 192. DOI: 10.1109/HiPC.2017.00030

  14. Ananenkov A.E., Marin D.V., Nuzhdin V.M., Rastorguev V.V., Skosyrev V.N. Zhurnal radioelektroniki, 2017, no. 2, pp. 1 — 18.

  15. Sentsov A.A., Ivanov S.A., Nenashev S.A., Turnetskaya E.L. Classification and recognition of objects on radar portraits formed by the equipment of mobile small-size radar systems, 2020 Wave Electronics and its Application in Information and Telecommunication Systems, WECONF 2020, pp. 9131475. DOI: 10.1109/WECONF48837.2020.9131475

  16. Nenashev V.A., Sinitsyn V.A., Strakhov S.A. IX Obshcherossiiskaya nauchno-prakticheskaya konferentsiya «Innovatsionnye tekhnologii i tekhnicheskie sredstva spetsial’nogo naznacheniya»: sbornik trudov, Saint Petersburg, Baltiiskii gosudarstvennyi tekhnicheskii universitet «Voenmekh» im. D.F. Ustinova, 2017, pp. 351 — 355.

  17. Richard Klemm, Ulrich Nickel, Christoph Gierull, Pierfrancesco Lombardo, Hugh Griffiths and Wolfgang Koch (Eds.). Novel Radar Techniques and Applications. Vol. 1. Real Aperture Array Radar, Imaging Radar, and Passive and Multistatic Radar, SciTech Publishing, 2017, 952 p. URL: http://dx.doi.org/10.1049/sbra512f_pti

  18. Shepeta A.P., Osipov L.A., Sergeev M.B., Solov’ev N.V. Fundamental’nye issledovaniya, 2004, no. 6, pp. 83 — 85.

  19. Nenashev V.A., Grigor’ev E.K., Nenashev S.A. XXIX Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya «Sovremennye tekhnologii v zadachakh upravleniya, avtomatiki i obrabotki informatsii»: sbornik trudov, Moscow, Izdatel’skii Dom «MEDPRAKTIKA-M», 2020, pp. 147 — 148.

  20. Richard Klemm (ed.). Novel Radar Techniques and Applications. Vol. 2. Waveform Diversity and Cognitive Radar, and Target Tracking and Data Fusion, London, Scitech Publishing, 2017, 553 p.

  21. Sergeev M.B., Sentsov A.A., Grigor’ev E.K., Nenashev S.A. Modelirovanie, optimizatsiya i informatsionnye tekhnologii, 2020, no. 8 (3), pp. 1 — 17. DOI: 10.26102/2310-6018/2020.30.3.038

  22. Verba V.S., Tatarskii B.G. et al. Radiolokatsionnye sistemy aviatsionno-kosmicheskogo monitoringa zemnoi poverkhnosti i vozdushnoyu prostranstva: monografiya (Radar systems for aerospace monitoring of the earth’s surface and airspace), Moscow, Radiotekhnika, 2014, 576 p.

  23. Melvin W.L., Scheer J.A. Principles of Modern Radar. Advanced Techniques. Vol. II, Scitech publishing, 2013, 876 p.

  24. Verba V.S., Merkulov V.I. Otsenivanie dal’nosti i skorosti v radiolokatsionnykh sistemakh (Estimation of range and speed in radar systems), Moscow, Radiotekhnika, 2010, 472 p.

  25. Nenashev V.A., Kryachko A.F., Shepeta A.P., Burylev D.A. Features of information processing in the onboard two-position small-sized radar based on UAVs, Proceedings of SPIE — The International Society for Optical Engineering, Tokyo, 2019, pp. 111970X-1-111970X-7. DOI: 10.1117/12.2542718


    Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход