Experimental study of aerodynamic characteristics in a supersonic wind tunnel ST-3 using a software and hardware complex


DOI: 10.34759/trd-2021-119-06

Аuthors

Rotermel A. R.*, Yashkov S. A.*, Sevchenko V. I.*

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: vka@mil.ru

Abstract

The article considers the developed software and hardware complex for conducting weight experiments with the help of strain gauges, which allows automatically launching and measuring the forces acting on the model of the aircraft throughout the entire operation time of the supersonic wind tunnel.

Experimental studies were carried out using a supersonic wind tunnel of the aerodynamic laboratory of the Military Space Academy named after A.F. Mozhaisky.

Currently, the supersonic wind tunnel provides the most reliable data on the study of the force acting on the model when interacting with the incoming flow of aircraft of various geometric shapes. To ensure the study of the aerodynamic characteristics of aircraft in a supersonic wind tunnel, the question arises of the development, implementation and use of modern measurement technologies that will expand the range of experimental studies. One of the types of conducting aerodynamic tests is a weight experiment.

This paper presents the results of the development, implementation and application of a software and hardware complex for conducting weight experiments in a supersonic wind tunnel using three-component strain gauges.

The software package is implemented in the LabVIEW graphical programming environment, which is an application graphical programming environment used as a standard tool for conducting measurements, analyzing their data, and then controlling devices and objects under study. A computer equipped with measurement and control hardware and LabVIEW allows you to fully automate the process of physical research. Creating any program is very simple, because it eliminates many syntactic details.

The system for measuring the forces acting on the model in interaction with the incoming flow, based on the software and hardware complex, allows you to determine the experimental values of the longitudinal X, normal Y and transverse Z forces, the value of which determines the corresponding dimensionless aerodynamic coefficients of the model (Cx, Cya, Mz, K, Xd).

Because of the conducted experimental studies on a supersonic wind tunnel with the use of a software and hardware complex, it has shown its effectiveness. The efficiency lies in the possibility of plotting graphs in real time, obtaining the values of the aerodynamic coefficients in tabular data. Because of the implementation of the software and hardware complex, it allowed to reduce the time for preparing, conducting and compiling the report of the conducted experimental studies by half.


Keywords:

supersonic wind tunnel, hardware and software complex, strain gauge scales

References

  1. Wilcox D.C. Turbulence modeling for CFD, La Canada, California: DCW Industries Inc., 1998, 537 p.

  2. Butyrin P.A. Avtomatizatsiya fizicheskikh issledovanii i eksperimenta: komp’yuternye izmereniya i virtual’nye pribory na osnove Lab VIEW 7 (Automation of physical research and experiment: computer measurements and virtual devices based on Lab VIEW 7), Moscow, DMK Press, 2005, 264 p.
  3. Kovalev P.I., Mende N.P. Al’bom sverkhzvukovykh techenii (Album of supersonic currents), Saint Petersburg, Izd-vo Politekhnicheskogo universiteta, 2011, 251 p.
  4. Bimatov V.I., Savkina N.V., Farapov V.V. Vestnik Tomskogo gosudarstvennogo universiteta, 2016, no. 5 (43), pp. 35 — 42. DOI: 10.17223/19988621/433/4
  5. Bosnyakov S.M., Kovalenko V.V., Mikhailov S.V., Remeev N.Kh. Uchenye zapiski TsAGI, 1989, vol. 20, no 1, pp. 30 — 39.
  6. Volkov K.N., Emel’yanov V.N., Yakovchuk M.S. Prikladnaya mekhanika i tekhnicheskaya fizika, 2015, vol. 56, no. 5, pp. 789 — 798. DOI: 10.15372/PMTF20150505
  7. Golovkin M.A., Golovkina E.V. Trudy MAI, 2016, no. 90. URL: http://trudymai.ru/eng/published.php?ID=74692
  8. Duganov V.V., Ivanov M.Ya. Uchenye zapiski TsAGI, 1977, vol. 8, no. 6, pp. 132 — 137.
  9. Znamenskaya I.A., Gvozdeva L.G., Znamenskii N.V. Metody vizualizatsii v mekhanike gaza (Visualization methods in gas mechanics), Moscow, Izd-vo MAI, 2001, 57 p.
  10. Krasnov N.F., Koshevoi V.N., Danilov A.N. et al. Aerodinamika tel vrashcheniya (Aerodynamics of bodies of rotation), Moscow, Mashinostroenie, 1964, 573 p.
  11. Krasnov N.F. Prikladnaya aerodinamika (Applied aerodynamics), Moscow, Vysshaya shkola, 1974, 732 p.
  12. Lutsenko A.Yu., Stolyarov E.G., Chernukha P.A. Nauchnyi Vestnik MGTU GA, 2015, no. 212, pp. 28 — 44.
  13. Mel’nikov A.P. Aerodinamika bol’shikh skorostei (High-speed aerodynamics), Moscow, Voenizdat, 1961, 424 p.
  14. Smirnova S.I., Pakhov V.V., Stepanov R.P. et al. Trudy MAI, 2014, no. 73. URL: http://trudymai.ru/eng/published.php?ID=48465
  15. Pashentsev V.N., Strukov Yu.N. Izmeritel’nyi kompleks na osnove personal’nogo komp’yutera i izmeritel’nykh modulei (Measuring complex based on a personal computer and measuring modules), Moscow, MIFI, 2009, 48 p.
  16. Petrov K.P. Aerodinamika tel prosteishikh form (Aerodynamics of bodies of the simplest shapes), Moscow, Faktorial, 1998, 432 p.
  17. Samokhvalov N.Yu. Trudy MAI, 2014, no. 74. URL: http://trudymai.ru/eng/published.php?ID=49297
  18. Tarasenko O.S., Bodryshev V.V., Abashev V.M. Trudy MAI, 2015, no. 83. URL: http://trudymai.ru/eng/published.php?ID=62032
  19. Kharitonov A.M. Tekhnika i metody aerofizicheskogo eksperimenta. Chast’ 2. Metody i sredstva aerofizicheskikh izmerenii (Techniques and methods of the aerophysical experiment. Part 2. Methods and means of aerophysical measurements), Novosibirsk, Izd-vo NGTU, 2007, 456 p.
  20. Chornyi A.D., Chichko A.N., Zhukova Yu.V., Kukharchuk I.G., Melets A.F., Malkin V.A. Sistemnyi analiz i prikladnaya informatika, 2018, no. 3, pp. 42 — 47.

  21. Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход