Stability of thin-walled axisymmetric coaxial structures containing liquid under multifactor loads

DOI: 10.34759/trd-2021-119-08


Park S. *, Grigoryev V. G.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia



The presented work supposes that the structure consisting of two coaxial, liquid filled shells to be under both internal and external pressure. The internal distributed pressure is being applied to the internal cylindrical shell, while external pressure is being applied to the external shell, and both these pressures are independent and variable. The distance between external and internal cylinders may vary as well, and each of these variables affects natural frequency and stability of the structure.

The purpose of this work is to develop a methodology for studying the stability of axisymmetric thin-walled elastic shell structures composed of two coaxial shells, the cavities of which can contain an ideal incompressible fluid. The stability domain boarder, which separates the domain, where the loaded structure keeps stable, fr om the domain, wh ere the structure loses its stability, is being determined on the coordinate plane of two parameters. Computations for this study were performed with the Visual Basic for Applications (VBA) system in the Excel spreadsheet processor medium.


dynamic characteristics, natural frequencies, axially symmetric shell, finite element method, multifactor loading, elastic shell with liquid


  1. Novozhilov V.V. Osnovy nelineinoi teorii uprugosti ((Fundamentals of Nonlinear Theory of Elasticity), Leningrad — Moscow, Gostekhizdat, 1948, 118 p.

  2. Rabinovich B.I. Vvedenie v dinamiku raket-nositelei kosmicheskikh apparatov (Introduction to the Carrier Rockets Dynamics), Moscow, Mashinostroenie, 1975, 416 p.
  3. Grigor’ev V.G., Efremov R.M., Zdanovich Yu.K. Materialy XII Mezhdunarodnogo simpoziuma «Dinamicheskie i tekhnologicheskie problemy mekhaniki konstruktsii i sploshnykh sred», Moscow, MAI, 2006, pp. 112 — 113.
  4. Grigolyuk E.I., Shklyarchuk F.N. Prikladnaya matematika i mekhanika, 1970, vol. 34, no. 3, pp. 401 — 411.
  5. Grigor’ev V.G. Metodologiya issledovaniya dinamicheskikh svoistv slozhnykh uprugikh i gidrouprugikh system (Methodology for the dynamic properties studying of complex elastic and hydroelastic systems), Doctor’s thesis, Moscow, 2000.236 p.
  6. Grigor’ev V.G., Grigor’eva E.V. Izvestiya RAN. Mekhanika tverdogo tela, 2011, no. 2, pp. 147 — 159.
  7. Firsanov V.V., Vo A.Kh. Trudy MAI, 2018, no. 102. URL:
  8. Antuf’ev B.A., Sukmanov I.V. Trudy MAI, 2021, no. 116. URL: DOI: 10.34759/trd-2021-116-03
  9. Pozhalostin A.A., Goncharov D.A. Trudy MAI, 2017, no. 95. URL:
  10. Moiseev N.N., Petrov A.A. Chislennye metody rascheta sobstvennykh chastot kolebanii ogranichennogo ob"ema zhidkosti (Numerical methods for natural frequencies calculating of a limited liquid volume vibrations), Moscow, Vychislitel’nyi tsentr AN SSSR, 1966, 169 p.
  11. Kolesnikov K.S. Dinamika raket (Rocket dynamics), Moscow, Mashinostroenie, 1990, 375 p.
  12. Saratov Yu.S., Pozhalostin A.A. Osnovy teorii kolebanii (lineinaya teoriya) (Fundamentals of vibrations theory (linear theory)), Moscow, Izd-vo MGTU im. N.E. Baumana, 1995, vol. 2, 52 p.
  13. Blinkova A.Yu., Ivanov S.V., Kuznetsova E.L., Mogilevich L.I. Trudy MAI, 2014, no. 78. URL:
  14. Zemlyanukhin A.I., Mogilevich L.I. Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 1995, vol. 3, no. 1, pp. 52 — 58.
  15. Loitsyanskii L.G. Mekhanika zhidkosti i gaza (Mechanics of liquid and gas), Moscow, Drofa, 2003, 840 p.
  16. Gorshkov A.G., Medvedskii A.L., Rabinskii L.N., Tarlakovskii D.V. Volny v sploshnykh sredakh (Waves in continuum), Moscow, Fizmatlit, 2004, 472 p.
  17. Grishanina T.V., Tyutyunnikov N.P., Shklyarchuk F.N. Metod otsekov v raschetakh kolebanii konstruktsii letatel’nykh apparatov (Compartment method for calculating vibrations of aircraft structures), Moscow, Izd-vo MAI, 2010, 180 p.
  18. Biderman V.L. Mekhanika tonkostennykh konstruktsii (Mechanics of thin-walled structures), Moscow, Mashinostroenie, 1977, 488 p.
  19. Myachenkov V.I., Mal’tsev V.P., Maiboroda V.P. et al. Raschety mashinostroitel’nykh konstruktsii metodom konechnykh elementov: Spravochnik (Calculations of machine-building structures by the finite element method: Manual), Moscow, Mashinostroenie, 1989, 520 p.
  20. Shmakov V.P. Izbrannye trudy po gidrouprugosti i dinamike uprugikh konstruktsii (Selected works on hydroelasticity and elastic structures dynamics), Moscow, Izd-vo MGTU im. N.E. Baumana, 2011, 287 p.

  21. Download — informational site MAI

Copyright © 2000-2024 by MAI