Reducing vibration activity level by a damping coating with reinforcing layer


DOI: 10.34759/trd-2021-119-09

Аuthors

Gerasimchuk V. V.*, Telepnev P. P.**

Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

*e-mail: gerasimchuk@laspace.ru
**e-mail: telepnev@laspace.ru

Abstract

The article deals with experimental studies on the vibration level reducing of spacecraft electromechanical actuators by increasing the structure damping properties by application of a multi-layer damping coating with reinforcing layer.

A vibration-absorbing self-adhesive coating made of multilayer aluminum foil and rubber-based polymer interlayers was being studied as a damping coating. A structural element bending at lateral vibrations causes cyclic tensile-compressive deformation in the damping layer and damping forces corresponding to them.

The tests were being performed on a force-measuring test-bench. A frame with a self-adhesive vibration-absorbing coating was fixed on a multicomponent measuring platform, on which electromechanical devices with moving masses were being installed. While these mechanisms operation, besides controlling impacts of the orientation system, negative forces and moments transferred over the spacecraft structure to the precise equipment occur causing its improper functioning. The force-moment reactions and vibration accelerations appearing herewith were being rasterized and processed by the special software.

The authors revealed experimentally that damping coating with a reinforcing layer application could reduce the vibration activity level of a structure in the entire frequency range of electromechanical devices with moving masses (up to 7 %) operation. The levels more meaningful at the vibration activity reduction (up to 15%) were being registered in the peak regions of the high-frequency vibrations.

The experimenters revealed that the damping coating operability directly depends on the fastening quality and correctness of the structure’s surface coating. Preliminary shapes determining of the vibrations of interest is required to determine the places of maximum stresses of bending vibrations occurrence. The damping coating should be fixed in the places of maximum stresses occurring at vibrations, so that temperature effect of mechanical energy into heat energy converting, and amplitude-frequency effect of the vibrations damping by the reinforcing layer manifest simultaneously and with maximum effect.

At the authors’ opinion, different modes of vibrations with a broadband spectrum of disturbance frequencies will have a certain shape and frequency, into which external forces and moments «pump over» the main energy od disturbance, and it is this shape that will be optimal to ensure maximum reduction in vibration loading. The article suggests recommendations for locations selection for the damping coating with reinforcing layer installing.

The test results may be applied to ensure the vibration loading level reduction of structural elements while a spacecraft design and pilot testing.

Keywords:

vibration, damping coating, spacecraft

References

  1. Tokovinin A.A. Orbital’nye opticheskie teleskopy (Orbital optical telescopes), Moscow, Znanie, 1986, 64 p.

  2. Gerasimchuk V.V., Gerasimchuk L.V., Ermakov V.Yu., Efanov V.V., Karchaev Kh.Zh., Kuznetsov D.A., Telepnev P.P., Tsyplakov A.E. Kosmonavtika i raketostroenie, 2018, no. 5, pp. 130 — 138.
  3. Nashif A., Dzhouns D., Khenderson Dzh. Dempfirovanie kolebanii (Vibrations damping), Moscow, Mir, 1988, 448 p.
  4. Ermakov V.Yu. Trudy MAI, 2019, no. 106. URL: http://trudymai.ru/eng/published.php?ID=105679
  5. Frolov K.V. Vibratsii v tekhnike: Spravochnik v 6-ti tomakh. Zashchita ot vibratsii i udarov (Vibration and shock protection), Moscow, Mashinostroenie, 1985, vol. 6, 456 p.
  6. Vorontsov V.A., Karchaev Kh.Zh., Martynov M.B., Primakov P.V. Trudy MAI, 2016, no. 86. URL: http://trudymai.ru/eng/published.php?ID=65702
  7. Gerasimchuk V.V., Efanov V.V., Ermakov V.Yu., Lokhanov I.V. et al. Polet, 2018, no. 8, pp. 33 — 38.
  8. Mashinostroenie. Entsiklopediya. T. 1-3. Kniga 1. Dinamika i prochnost’ mashin. Teoriya mekhanizmov i mashin (Mechanical engineering. Encyclopedia. Vol. 1-3. Book1. Dynamics and strength of machines. Theory of mechanisms and machines), Moscow, Mashinostroenie, 1994, 534 p.
  9. ASTM E756-05. Standard Test Method for Measuring Vibration-Damping Properties of Materials, USA, ASTM International, 2017, 14 p.
  10. Poduraev Yu.V. Mekhatronika: osnovy, metody, primenenie (Mechatronics: fundamentals, methods and application), Moscow, Mashinostroenie, 2007, 256 p.
  11. Amir’yants G.A., Malyutin V.A. Trudy MAI, 2018, no. 103. URL: http://trudymai.ru/eng/published.php?ID=100600
  12. Firsanov V.V., Fam V.T. Trudy MAI, 2019, no. 105. URL: URL http://trudymai.ru/published.php?ID=104174
  13. Demenko O.G., Biryukov A.S., Zverev M.A. Vestnik NPO im. S.A. Lavochkina, 2020, no. 3, pp. 38 — 45.
  14. Arkhangelov A.G., Rulev S.V., Ermakov V.Yu., Gerasimchuk V.V. Programma upravleniya magnitozhidkostnoi sistemoi vibrozashchity. Svidetel’stvo o gosudarstvennoi registratsii programmy dlya EVM № 2016616337, 2018.
  15. Mikhalev S.M. Trudy MAI, 2019, no. 106. URL: http://trudymai.ru/eng/published.php?ID=105690
  16. Fu K., Gonsales R., Li K. Robototekhnika (Robotics), Moscow, Mir, 1989, 624 p.
  17. Ross D. Mechanics of Underwater Noise, Oxford, Pergamon Press, 1976, 370 p.
  18. Panovko Ya.G. Vnutrennee trenie pri kolebaniyakh uprugikh system (Internal friction during elastic systems vibrations), Moscow, Fizmatgiz, 1960. 193 p.
  19. Calucio A.C., Deu J.-F., Ohayon R. Finite Element Fomulation of Viscoelastic Sandwich Beams Using Fractional Derivation Operators, Computational Mechanics, 2004, vol. 33, issue 4, pp. 282 — 291.
  20. Paimushin V.N. et al. Mekhanika kompozitnykh materialov, 2016, no. 4, pp. 615 — 644.
  21. Stopin G., Tesse C. EP Patent 2474971A1, 2010. URL: https://translationportal.epo.org/emtp/translate/?ACTION=abstract-retrieval&COUNTRY=EP&ENGINE=google&FORMAT=docdb&KIND=A1&LOCALE=en_EP&NUMBER=2474971&SRCLANG=en&TRGLANG=ru

  22. Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход