Method for evaluating residual stresses in AlSi10Mg alloy specimens obtained by SLM technology


DOI: 10.34759/trd-2021-119-10

Аuthors

Babaitsev A. V.*, Rabinsky L. N.**, Min Y. N.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: ar77eny@gmail.com
**e-mail: rabinskiy@mail.ru

Abstract

Today, additive technologies are used to create physical models, prototypes, samples, tooling, and the manufacture of plastic, metal, ceramic, glass, composite and biomaterial components. Of greatest technological interest is the manufacture of final parts from metal alloys used in the aerospace industry, mechanical engineering, automotive, oil and gas, electronics, medicine and other industries. Selective laser melting (SLM) is one of the most advanced and popular 3D metal printing technology. When manufacturing products using SLM technology, complex geometric shapes, including internal cavities and channels, can be reproduced, as well as with well-thought-out design solutions — to achieve a minimum amount of machining and eliminate expensive tooling. However, as a result of powder sintering and local uneven overheating, temperature residual stresses are formed in the synthesized parts. The level of which can significantly affect the performance of the resulting products. The paper presents a variant of the method for determining residual stresses in products made of PH1 stainless steel, obtained by the SLM technology. For this, a study of residual stresses was carried out on flat rectangular samples grown in 3 directions relative to the construction plane (parallel, perpendicular and at an angle of 45 degrees to the construction platform). The method for determining residual stresses is based on determining the deformation during drilling of the probe hole and subsequent numerical calculation to determine the residual stresses. Deformations were fixed using the image correlation method. Such a non-contact method makes it possible to determine with high accuracy the field of displacements and deformations using a drilling machine and a camera with a macro lens. The numerical calculation was carried out by the finite element method taking into account certain deformations from the experiment in the COMSOL Multiphysics environment. As a result of calculations, the distribution of residual strains and stresses was obtained for all samples for all its components. The most indicative results were obtained on a sample grown in the plane of construction.

Keywords:

additive technologies, SLM, residual stresses, probing holes, digital image correlations

References

  1. Birger I.A. Ostatochnye napryazheniya (Residual stress), Moscow, Mashgiz, 1963, 239 p.

  2. Chernyshev G.N. Ostatochnye napryazheniya v deformiruemykh tverdykh telakh (Residual stresses in deformable solids), Moscow, Nauka, 1996, 240 p.
  3. Burkin S.P., Shimov G.V., Andryukova E.A. Metallurgiya. Ostatochnye napryazheniya v metalloproduktsii (Metallurgy. Residual stresses in metal products: a textbook for secondary vocational education), Moscow, Izdatel’stvo Yurait, 2018, 247 p.
  4. Solyaev Y., Babaytsev A. Direct observation of plastic shear strain concentration in the thick GLARE laminates under bending loading, Composites Part B: Engineering, 2021, vol. 224, no. 1, pp. 109145. DOI: 10.1016/j.compositesb.2021.109145
  5. Besnard G., Hild F., Roux S. «Finite-element» displacement fields analysis from digital images: Application to Portevin-Le Châtelier, Experimental Mechanics, 2006, vol. 46, no. 6, pp. 789 — 803. DOI: 10.1007/s11340-006-9824-8
  6. Roux S., Hild F. Stress intensity factor measurements from digial image correlation: Post-processing and integrated approaches, International Journal of Fracture, 2006, vol. 140, no. 4, pp. 141 — 157. DOI:10.1007/s10704-006-6631-2
  7. Pan B. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review, Measurement Science and Technology, 2009, vol. 20, no. 6, pp. 062001. DOI: 10.1088/0957-0233/20/6/062001
  8. Sun Y.F., Pang J.H.L. AFM image reconstruction for deformation measurements by digital image correlation, Nanotechnology, 2006, no. 17, pp. 933 — 939. DOI: 10.1088/0957-4484/17/4/016
  9. Zubov V.A., Kraiskii A.V., Merkin A.A., Sultanov T.T. Kratkie soobshcheniya po fizike, 1978, no. 10, pp. 35 — 42.
  10. Wang Y., Cuitino A. M. Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlatotion, International Journal of Solids and Structures, 2002, no. 39, pp. 3777 — 3796. DOI: 10.1016/S0020-7683(02)00176-2
  11. Babaytsev A.V., Kuznetsova E.L., Rabinskiy L.N., Tushavina O.V. Investigation of permanent strains in nanomodified composites after molding at elevated temperatures, Periodico Tche Quimica, 2020, vol. 17, no. 34, pp. 1055 — 1065.
  12. Shtrikman M.M., Kashchuk N.M. Trudy MAI, 2011, no. 43. URL: http://trudymai.ru/eng/published.php?ID=24728
  13. Rybaulin A.G., Sidorenko A.S. Trudy MAI, 2015, no. 79. URL: http://trudymai.ru/eng/published.php?ID=55786
  14. Lebedkin I.F., Molotkov A.A., Tret’yakova O.N. Trudy MAI, 2018, no. 101. URL: http://trudymai.ru/eng/published.php?ID=97045
  15. Chumakov D.M. Trudy MAI, 2014, no. 78. URL: http://trudymai.ru/eng/published.php?ID=53682
  16. Suprapedi, Toiooka S. Prostranstvenno-vremennoe nablyudenie plasticheskoi deformatsii i razrusheniya metodom lazernoi spekl-interferometrii, Fizicheskaya mezomekhanika, 1998, vol. 1, no. 1, pp. 55 — 60.
  17. Pisarev V., Odintsev I., Eleonsky S., Apalkov A. Residual stress determination by optical interferometric measurements of hole diameter increments, Optics and lasers in engineering, 2018, no. 110, pp. 437 — 456. DOI: 10.1016/j.optlaseng.2018.06.022
  18. Volkov V.I., N’yan Min Khtet, Vei Khlein U, Tun Min Lat. Trudy MFTI, 2018, vol. 10, no. 1, pp. 68 — 74.
  19. Bodryshev V.V. Tekhnologiya materialov, 2017, no. 11, pp. 8 — 12.
  20. Korbukov G.E., Kulikov V.V., Tsvetov E.R. Opticheskii geterodinnyi metod korrelyatsionnoi obrabotki izobrazhenii (Optical heterodyne method for correlation image processing), Leningrad, Nauka, 1976, pp. 51 — 68.

  21. Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход