Combined rotations in technical systems


DOI: 10.34759/trd-2021-120-01

Аuthors

Popov I. P.

Kurgan State University, 63/4, Sovetskaya str., Kurgan, 640020, Russia

e-mail: ip.popow@yandex.ru

Abstract

The purpose of the research consists in generalizing the principle of a combination of movements to the circular movements. The relevance of the work is stipulated by the fact that in technical systems, including aviation and space technology, particularly, in aircraft transmissions, bearings, orbital systems, helicopter mechanisms and many others, combined rotational movements are widespread, and it is important to represent the nature of the total movement when designing. The author considers an xʹ0ʹyʹ coordinate system, which rotates in an x0y one without angular acceleration with the velocity of ɷ. The radius of rotation is ρ1. Wherein 0x||0ʹxʹ, 0y||0ʹyʹ. The object a rotates in a  xʹ0ʹyʹ coordinate system without angular acceleration at a speed ±ɷ. The radius of rotation is ρ2. All standard characteristics of the ellipse were determined in relation to the case under consideration. The elliptical trajectory inclination is set. The article shows that in the case of the trajectory of the total motion is elliptical and the semiaxes are equal to (ρ12) and |ρ1–ρ2|, the object performs circular motion in the coordinate system xʹ0ʹyʹ without angular acceleration with velocity –ɷ. Just as the result of the two nonaccelerated movements superposition is also an nonaccelerated movement, i.e. it is uniform and rectilinear movement, at rotations in the same direction the trajectory of the total movement represents a circumference. At circular motions with multiple speeds, the trajectory of the total motion represents spirals. The practical aspect of the study is being determined by the fact that the formulas obtained can be directly used in CAD when performing design work.

Keywords:

combination of movements, circular movements, elliptical trajectory, circular trajectory, multiples of speed

References

  1. Popov V.V., Sorokin F.D., Ivannikov V.V., Degtyarev S.A. Trudy MAI, 2020, no. 112. URL: http://trudymai.ru/eng/published.php?ID=116336. DOI: 10.34759/trd-2020-112-7

  2. Kasumov E.V. Trudy MAI, 2012, no. 52. URL: http://trudymai.ru/eng/published.php?ID=29426

  3. Nakhatakyan F.G. Trudy MAI, 2020, no. 115. URL: http://trudymai.ru/eng/published.php?ID=119901. DOI: 10.34759/trd-2020-115-04

  4. Sorokin F.D., Chzhan Kh., Popov V.V., Ivannikov V.V. Trudy MAI, 2019, no. 104. URL: http://trudymai.ru/eng/published.php?ID=102114

  5. Ledkov A.S., Sobolev R.G. Trudy MAI, 2019, no. 107. URL: http://trudymai.ru/eng/published.php?ID=107856

  6. Bardin B.S., Chekina E.A. Trudy MAI, 2016, no. 89. URL: http://trudymai.ru/eng/published.php?ID=72568

  7. Bezglasnyi S.P., Krasnov M.V., Mukhametzyanova A.A. Trudy MAI, 2015, no. 82. URL: http://trudymai.ru/eng/published.php?ID=58455

  8. Animitsa V.A., Borisov E.A., Kritskii B.S., Mirgazov R.M. Trudy MAI, 2016, no. 85. URL: http://trudymai.ru/eng/published.php?ID=65452

  9. Pavlenko N.S. Trudy MAI, 2015, no. 81. URL: http://trudymai.ru/eng/published.php?ID=57765

  10. Ignatkin Yu.M., Makeev P.V., Shomov A.I. Trudy MAI, 2013, no. 69. URL: http://trudymai.ru/eng/published.php?ID=43135

  11. Zhelonkin A.A. Trudy MAI, 2013, no. 65. URL: http://trudymai.ru/eng/published.php?ID=35856

  12. Kochetov V.I., Lazarev S.I., Sokolov M.V., Lomakina O.V., Shestakov K.V. Trudy MAI, 2020, no. 110. URL: http://trudymai.ru/eng/published.php?ID=112813. DOI: 10.34759/trd-2020-110-1

  13. Yudintsev V.V. Trudy MAI, 2017, no. 95. URL: http://trudymai.ru/eng/published.php?ID=83566

  14. Odnokurtsev K.A., Vlasevskii A.A., Lukin P.A. Trudy MAI, 2013, no. 66. URL: http://trudymai.ru/eng/published.php?ID=40286

  15. Krylov N.V. Trudy MAI, 2013, no. 65. URL: http://trudymai.ru/eng/published.php?ID=35922

  16. Efromeev A.G. Trudy MAI, 2012, no. 62. URL: http://trudymai.ru/eng/published.php?ID=35509

  17. Krylov N.V., Samsonovich S.L., Stepanov V.S. Trudy MAI, 2012, no. 62. URL: http://trudymai.ru/eng/published.php?ID=35524

  18. Popov I.P. Theory of a Multi-Inert Oscillator, Journal of Machinery Manufacture and Reliability, 2020, vol. 49, no. 8, pp. 667 — 671. DOI: 10.3103/S1052618820080105

  19. Popov I.P. Prikladnaya matematika i voprosy upravleniya, 2018, no. 4, pp. 73 — 79. DOI: 10.15593/2499-9873/2018.4.04

  20. Popov I.P. Vestnik Vologodskogo gosudarstvennogo universiteta, 2020, no. 3 (9), pp. 11 — 13.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход