Mathematical model of the flow processes around a body with gas-dynamic controls for the high-speed flow


DOI: 10.34759/trd-2021-120-04

Аuthors

Panfilov E. B.

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

e-mail: vka@mil.ru

Abstract

The objects interaction with a high-speed flow is accompanied by the occurrence of high dynamic and thermal loads. At the same time, it is necessary to ensure the reliability of functioning and the efficiency of movement control. One of the directions for improving the aircraft movement control efficiency is the development of gas-dynamic movement controls, movement stabilization and reduction of temperature loads on surface areas. In this regard, it is necessary to correctly determine the thermal regimes of the most heat-loaded areas of the aircraft surfaces. For this purpose, the study of thermo-gasdynamic processes near a conical surface with the presence of gas injection into a high-speed flow was carried out. A mathematical model of a high-speed flow around a body with the presence of gas injection into a high-speed flow is presented, which takes into account the processes of chemical kinetics that occur in air at high temperatures. The air was considered as a mixture of five components (O2, N2, O, N, NO). In the first approximation, for the model of chemical kinetics, the initial five reactions of the Park K. model are applied. With regard to motion in the upper layers of the atmosphere, these reactions describe the main features of the processes occurring in air at high temperatures. The rate constants of each forward and reverse reaction are determined using the generalized Arrhenius formula. Investigations of the processes were carried out in a high-speed flow (M = 10) of a conical surface (θ = 10о) with gas injection holes located along the generatrix at a distance x/l = 0.3, 0.6, 0.9 from the nose. Free stream parameters: P = 79.8 Pa, Т = 270.7 K, mass fraction γN2 = 0.767, γО2 = 0.233. The parameters of the injected jets Tj = 293 K, J = 4.95 is the coefficient of penetration of the gas jet into the high-speed flow [4,5]. The mathematical model was verified by comparing the results obtained in a numerical experiment with the data of [7] and [8]. A good correlation of the calculation results was obtained. Small differences in data may depend on the choice of the chemical kinetics model and, accordingly, the reaction rate constants. Verification of the results obtained using the mathematical model with the results obtained experimentally showed a good visual coincidence of the shock-wave structure. Application of the model of chemical kinetics made it possible, in the first approximation, to obtain the thermodynamic parameters of the high-speed flow near the investigated body with the gas-dynamic movement controls with sufficient accuracy. Comparison of the temperature data obtained in the course of the full-scale and numerical experiments showed a discrepancy of the order of 18—23%. he data obtained in the course of the research showed that the developed mathematical model gives sufficiently accurate results and allows them to be used in the study of processes occurring near a body in a high-speed stream with a gas-dynamic movement controls.

Keywords:

gas-dynamic controls, high-speed flow, chemical kinetics

References

  1. Bortner M.H. Chemical kinetics in a reentry flow field, King of Prussia, Pennsylvania, General Electric Space Sciences Laboraory, Missile and Space Division, 1963, 77 p.

  2. Park C. Assessment of Two-Temperature Kinetic Model for Ionizing Air, Journal of Termophysics and Heat Transfer, 1987, vol. 3, no. 3, DOI:10.2514/3.28771

  3. Chui E.H., Raithby G.D. Computation of Radiant Heat Transfer on a Non-Orthogonal Mesh Using the Finite-Volume Method, Numerical Heat Transfer, 1993, part B, no. 23, pp. 269-288. URL: https://doi.org/10.1080/10407799308914901

  4. Volkov K.N., Emelrsquo;yanov V.N., Yakovchuk M.S. Prikladnaya mekhanika i tekhnicheskaya fizika, 2015, vol. 56, no. 5(333), pp. 64-75. DOI 10.15372/PMTF20150505

  5. Panfilov E.B., Shevchenko A.V., Prilutskii I.K., Snazin A.A. Trudy MAI, 2021, no. 118. URL: http://trudymai.ru/eng/published.php?ID=158212. DOI: 10.34759/trd-2021-118-03

  6. Zelrsquo;dovich Ya.B., Raizer Yu.P. Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii ((Physics of shock waves and high-temperature hydrodynamic phenomena), Moscow, Nauka, 1966, 686 p.

  7. Dellinger T.C. Computation of nonequilibrium merged stagnation shock layers by successive accelerated replacement, AIAA Paper, 1969, no. 69-655.

  8. Widhopf G.F., Wang J.C.T. A TVD Finite-Volume Technique for Nonequilibrium Chemically Reacting Flows, AIAA Paper, 1988, no. 88-2711. URL: https://doi.org/10.2514/6.1988-2711

  9. Snazin A.A., Shevchenko A.V., Panfilov E.B., Prilutskii I.K. Trudy MAI, 2021, no. 119. URL: http://trudymai.ru/eng/published.php?ID=159782. DOI: 10.34759/trd-2021-119-05

  10. Golovkin M.A., Golovkina E.V. Trudy MAI, 2016, no. 90. URL: http://trudymai.ru/eng/published.php?ID=74633

  11. Krasnov N.F., Koshevoi V.N., Kalugin V.T. Aerodinamika otryvnykh techenii (Separated flow aerodynamics), Moscow, Vysshaya shkola, 1988, 348 p.

  12. Antonov R.V., Grebenkin V.I., Kuznetsov N.P. et al. Organy upraveleniya vektorom tyagi tverdotoplevnykh raket: raschet konstruktivnye osobennosti, eksperiment (Thrust vector controls for solid-propellant rockets: calculation, design features, experiments), Moscow-Izhevsk, NITs laquo;Regulyarnaya i khaoticheskaya dinamikaraquo;, 2006, 552 p.

  13. Shevchenko A.V. et al. Trudy VKA imeni A.F.Mozhaiskogo, 2018, no. 665, pp. 237-246.

  14. Prokopenko E.A., Shevchenko A.V., Yashkov S.A. Trudy VKA imeni A.F.Mozhaiskogo, 2019, no. 671, pp. 368-376.

  15. Rotermelrsquo; A.R., Yashkov S.A., Shevchenko V.I. Trudy MAI, 2021, no. 119. http://trudymai.ru/eng/published.php?ID=159783. DOI 10.34759/trd-2021-119-06

  16. Larina E.V., Kryukov I.A., Ivanov I.E. Trudy MAI, 2016, no. 91. URL: http://trudymai.ru/eng/published.php?ID=75565

  17. Kudimov N.F., Safronov A.V., Tretrsquo;yakova O.N. Trudy MAI, 2013, no. 70. URL: http://trudymai.ru/eng/published.php?ID=44440

  18. ZhongW., Zhang, T., Tamura T. CFD Simulation of Convective Heat Transfer on Vernacular Sustainable Architecture: Validation and Application of Methodology, Sustainability, 2019, no. 11(15), pp. 4231. DOI:10.3390/su11154231

  19. Michalcovaacute; V., Lausovaacute; L., Koloscaron; I. Numerical modelling of flow around thermally loaded object, MATEC Web of Conferences, 2017, no. 107, pp. 00082. DOI:10.1051/matecconf/201710700082

  20. Hubova O., Veghova I., Kralik J. Experimental and numerical investigation of in-line standing circular cylinders in steady and turbulent wind flow, IOP Conference Series Materials Science and Engineering, 2019, no. 603, pp. 032008. DOI:10.1088/1757-899X/603/3/032008


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход