Depressurization loads analysis method for flange connection of pipes with metal Z-shape seal


DOI: 10.34759/trd-2021-120-05

Аuthors

Boikov A. A.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: a.boickov@yandex.ru

Abstract

The article considers coupling of the pipelines by the non-contacting flanges, which is being pressurized by installing a Z-shaped metal seal into the connecting block. The issue of the coupling assessment necessity with a view to the seal edges breakaway from the flangesrsquo; surfaces is being put forward. This checkup should be performed prior to the tightness computing, since it may appear that the wedge-like seal edge breaks away from the seal surface under the impact of the internal pressure or axial external force, which leads to the impossibility of performing sealing functions by the assembly. Computational models applied by the author in the previous articles while obtaining expressions describing the pipelines flange coupling behavior with the Z-shape metal seal at the stage of both loading by the internal pressure and axial force were used. Derivation of expressions for the depressurizing loads is being based on introduction of other initial data concerning values of the force factors acting on the parts of the coupling. The reverse problem is being solved. Previously, the contact load was being defined through the known internal pressure and external axial force. In the present case, it is necessary to find the internal pressure of the external axial force, which will be the possible depressurizing load, by the known contact load on the detached edge. In the case of both with the internal pressure and external axial force, two possible values of the pressure and depressurizing force will take place, namely in the case of the upper or lower edge detachment. Minimum of the two possible values is being selected as the depressurizing force. As the result, the possibility will arise to define which edge will be the first to detach.

Keywords:

Z-shape seal, depressurization loads, tightness analysis

References

  1. Khill R. Matematicheskaya teoriya plastichnosti (The mathematical theory of plasticity), Moscow, Gostekhizdat, 1956, 407 p.

  2. Malinin N.N. Prikladnaya teoriya plastichnosti i polzuchesti (Engineering theory of plasticity and creeping), Moscow, Mashinostroenie, 1975, 400 p.

  3. Davydov D.V., Myasnyankin Yu.M. Vestnik Voronezhskogo gosudarstvennogo universiteta: Fizika. Matematika, 2009, no. 1, pp. 94ndash;100.

  4. Ivlev D.D., Maksimova L.A. Izvestiya RAN. Mekhanika tverdogo tela, 2000, no. 3, pp. 131-136.

  5. Boikov A.A., Shishkin S.V. Kosmonavtika i raketostroenie, 2020, no. 5 (116), pp. 86ndash;99.

  6. Shishkin S.V., Boikov A.A. Trudy MAI, 2021. No. 116. URL: http://trudymai.ru/eng/published.php?ID=121011. DOI: 10.34759/trd-2021-116-04

  7. Pkhon Kh.K., Sysoev E.O., Kuznetsov E.A., Sysoev O.E. Trudy MAI, 2020, no. 110. URL: http://trudymai.ru/eng/published.php?ID=112828. DOI: 10.34759/trd-2020-110-4

  8. Aung Ch.T., Babaitsev A.V. Trudy MAI, 2020, no. 113. URL: http://trudymai.ru/eng/published.php?ID=118135. DOI: 10.34759/trd-2020-113-18

  9. Korovaitseva E.A. Trudy MAI, 2020, no. 114. URL: http://trudymai.ru/eng/published.php?ID=118881. DOI: 10.34759/trd-2020-114-04

  10. Shishkin S.V., Boikov A.A., Kolpakov A.M. Trudy MAI, 2019, no. 109. URL: http://trudymai.ru/eng/published.php?ID=111374. v DOI: 10.34759/trd-2019-109-9

  11. Boikov A.A., Shishkin S.V. Kosmonavtika i raketostroenie, 2020, no. 4 (115). pp. 45ndash;56. DOI: 10.34759/trd-2019-109-9

  12. Birger I.A., Mavlyutov R.R. Soprotivlenie materialov (Strength of materials), Moscow, Nauka, 1986, 560 p.

  13. Boyarshinov S.V. Osnovy stroitelrsquo;noi mekhaniki mashin (The basics of structure mechanics of maschines), Moscow, Mashinostroenie, 1973, 456 p.

  14. Sadd Martin H. Elasticity. Theory, Applications and Numerics. Burlington, USA, Elsevier Inc, 2009, 536 p.

  15. Gerasimenko P.V., Khodakovskiy V.A. Numerical Algorithm for Investigating the Stress-Strain State of Cylindrical Shells of Railway Tanks, Vestnik of St.Petersburg University:Mathematics, 2019, vol. 52, no. 2, pp. 207ndash;213. DOI: 10.1134/S1063454119020067

  16. Hudramovych V.S., Dzyuba A.P. Contact interactions and optimization of locally loaded shell structures, Journal of Mathematical Sciences, 2009, vol. 162, pp. 231ndash;245. DOI: 10.1007/s10958-009-9634-5

  17. Zhiber A.V., Yurrsquo;eva A.M. On a Certain Class of Hyperbolic Equations with Second-Order Integrals, Journal of Mathematical Sciences, 2021, vol. 252, pp. 168ndash;174. DOI: 10.1007/s10958-020-05151-y

  18. Bagderina Yu.Yu. Eigenfunctions of Ordinary Differential Euler Operators, Journal of Mathematical Sciences, 2021, vol. 252, pp. 125ndash;134. DOI: 10.1007/s10958-020-05147-8

  19. Chuiko S.M., Nesmelova O.V. Nonlinear boundary-value problems for degenerate differential-algebraic systems, Journal of Mathematical Sciences, 2021, vol. 252, pp. 463ndash;471. DOI: 10.1007/s10958-020-05174-5

  20. Panov A.V. Optimal System of Subalgebras of the Direct Sum of Two Ideals, Journal of Mathematical Sciences, 2015, vol. 215, pp. 537ndash;542. DOI: 10.1007/s10958-016-2858-2

  21. Grazhdantseva E.Yu. Integralrsquo;noe ischislenie funktsii odnoi peremennoi (Integral analysis of one-variable functions), Irkutsk, Izd-vo IGU, 2012, 114 p.

  22. Voloshin A.A., Grigorrsquo;ev G.T. Raschet i konstruirovanie flantsevykh soedinenii: spravochnik (Analysis and design of flange connections. Reference book), Leningrad, Mashinostroenie, 1979, 128 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход