Depressurization loads analysis method for flange connection of pipes with metal Z-shape seal


DOI: 10.34759/trd-2021-120-06

Аuthors

Prokudin O. A.*, Rabinsky L. N.**, Tran Q. T.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: Prokudin_7713@mail.ru
**e-mail: f9_dec@mai.ru

Abstract

The article presents the studies of mechanical characteristics of a new composite material. The beam-shaped samples of rectangular cross-section from the laminar composite material were fabricated. The composite represents a pack of aluminum-lithium and fiber-glass plastic sheets of 0.3ndash;0.5 mm thickness. The effective elastic moduli of the composite pack obtained this way were determined by the experiment for quasi-static uniaxial tension. The basic dynamic tests were performed for cantilever beam samples made from the aluminum-fiberglass composite laminate for the freely damped oscillations. The freely damped oscillations were being excited kinematically by applying some initial transversal translation to the free-end section of the beam or dynamically by applying some transversal concentrated shock load. The gain-frequency characteristics of the samples of various geometric dimensions were obtained, and the peaks on the gain-frequency curves corresponding to the resonant frequencies of first eigenmode oscillations were revealed. The effective elastic moduli of the composite material were computed employing the obtained results. The damping factors of the studied composites were determined using the measured peaks widths in the vicinities of the resonant frequencies. The appropriate statistical analysis of the obtained tests results was performed, scattering of the results, corresponding to the samples of different widths was revealed. The exact solution to the direct problem on oscillation of the cantilever composite beam of laminated structure with the assigned physical constants was obtained for the accuracy evaluation of the obtained results. A model of transversal oscillations of the beam was developed, accounting for the transversal shift deformation, but neglecting the cross-section crimping deformation. The longitudinal and transverse translations of a point along the line, connecting the symmetry centers of cross-sections as well as the angles of rotation of cross-sections around transverse horizontal axe, are accepted as the model main kinematic variables. Relations for the deformations are written, and equations for both kinetic energy and strain energy of an oscillating beam are obtained. The appropriate equations of motion as well as their natural boundary conditions were obtained by the Hamilton variation principle. The boundary value problem for harmonic transverse oscillations of the cantilever beam was stated, and the corresponding characteristic equation for the frequency was derived. This equation is transcendental, and is being solved numerically. The complex moduli approach was applied to account for the damping effects. The frequencies and damping decrements obtained after the numerical-analytical solution of the direct problem of the beam oscillation are in good correlation with the test data.

Keywords:

experimental studies, laminated beams, aluminum-fiberglass composites, natural frequencies, gain-frequency characteristics, damping

References

  1. Grishchenko S.V. Trudy MAI, 2015, no. 84. URL: http://trudymai.ru/eng/published.php?ID=63011

  2. Endogur A.I., Kravtsov V.A. Trudy MAI, 2015, no. 81. URL: http://trudymai.ru/eng/published.php?ID=57755

  3. Dudchenko A.A., Le Kim Kyong, Lurrsquo;e S.A. Trudy MAI, 2012, no. 50. URL: http://trudymai.ru/eng/published.php?ID=28792

  4. Grishchenko S.V., Popov Yu.I. Trudy MAI, 2013, no. 65. URL: http://trudymai.ru/eng/published.php?ID=35854

  5. Antipov V.V., Dobryanskii V.N., Korolenko V.A., Lurrsquo;e S.A., Serebrennikova N.Yu., Solyaev Yu.O. Aerospace MAI Journal, 2018, vol. 25, no. 2, pp. 221-229.

  6. Antipov V.V., Prokudin O.A., Lurrsquo;e S.A., Serebrennikova N.Yu., Solyaev Yu.O., Konovalov A.N. Aerospace MAI Journal, 2019, vol. 26, no. 2, C. 229-237.

  7. Mathivanan P., Balakrishnan M., Krishnan H. Impact properties of aluminum — glass fiber reinforced plastics sandwich panels, Materials Research, 2012, vol. 15, no. 3, pp. 347-554. DOI:10.1590/S1516-14392012005000036

  8. Sang Y.P, Won J.C. The Guidelines of Material Design and Process Control on Hybrid Fiber Metal Laminate for Aircraft Structures, Optimum Composite Structures, Karam Y. Maalawi, 2019. DOI:10.5772/intechopen.78217

  9. Prokudin O.A., Solyaev Yu.O., Babaitsev A.V., Artemrsquo;ev A.V., Korobkov M.A. Vestnik Permskogo natsionalrsquo;nogo issledovatelrsquo;skogo politekhnicheskogo universiteta. Mekhanika, 2020, no. 4, pp. 260-270. DOI:10.15593/perm.mech/2020.4.22

  10. Botelho E.C., Silva R.A., Pardini L.C., Rezende M.C. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures, Materials Research, 2006, vol. 9, no. 3, pp. 247ndash;256. DOI:10.1590/S1516-14392006000300002

  11. Yilmaz C., Topal S., Ali H. Q., Tabrizi I. E., Al-Nadhari A., Suleman A., Yiliz M. Non-destructive determination of the stiffness matrix of a laminated composite structure with Lamb wave, Composite Structures, 2020, vol. 237, pp. 111956.

  12. Cui R., Lanza di Scalea F. On the identification of the elastic properties of composites by ultrasonic guided waves and optimization algorithm, Composite Structures, 2019, vol. 223, pp. 110969. DOI:10.1016/j.compstruct.2019.110969

  13. Chronopoulos D., Droz C., Apalowo R., Ichchou M., Yan W.J. Accurate structural identification for layered composite structures through a wave and finite element scheme, Composite Structures, 2017, vol. 182, pp. 566-578. DOI:10.1016/j.compstruct.2017.09.062

  14. Abrosimov N.A., Novoselrsquo;tseva N.A. The identification of material parameters in nonlinear deformation models of metallic-plastic cylindrical shells under pulsed loadings, Materials Physics and Mechanics, 2015, vol. 23, pp. 66-70.

  15. Vatulyan A.O., Nesterov S.A. About the specifics of identification thermomechanical characteristics of functionally graded hollow cylinder, Materials Physics and Mechanics, 2015, vol. 23, pp. 71-75. DOI:10.18500/1816-9791-2014-14-3-329-335

  16. Zhavoronok S.I. Mekhanika kompozitsionnykh materialov i konstruktsii, 2021, vol. 27, no. 2, pp. 227-260. DOI: 10.33113/mkmk.ras.2021.27.02.227_260.06

  17. Zhavoronok S.I. Vestnik Nizhegorodskogo un-ta im. N. I. Lobachevskogo, 2011, no. 4-5, pp 2154-2156.

  18. Egorova O.V., Zhavoronok S.I., Kurbatov A.S. The variational equations of the extended Nrsquo;th order shell theory and its application to some problems of dynamics, PNPU Mechanics Bulletin, 2015, no. 2, pp. 36-59. DOI: 10.15593/perm.mech/2015.2.03

  19. Amosov A.A., Zhavoronok S.I. Mekhanika kompozitsionnykh materialov i konstruktsii, 1997, vol. 3, no. 1, pp. 69-80.

  20. Amosov A.A., Knyazev A.A., Zhavoronok S.I. Mekhanika kompozitsionnykh materialov i konstruktsii, 1999, vol. 5, no. 1, pp. 60-72.

  21. Amosov A.A., Zhavoronok S.I., Leontrsquo;ev K.A. Mekhanika kompozitsionnykh materialov i konstruktsii, 2004, vol. 10, no. 3, pp. 301-310.

  22. Erofeev V.I., Kazhaev V.V., Semerikova N. P. Volny v sterzhnyakh. Dispersiya. Dissipatsiya. Nelineinostrsquo; Nelinejnostrsquo; (Waves in the rods. Dispersion. Dissipation. Non-linearity), Moscow, Fizmatlit, 2002, 208 p.

  23. Grigolyuk E.I., Selezov I.T. Mekhanika deformiruemykh tverdykh tel. Neklassicheskie teorii kolebanii sterzhnei, plastin i obolochek (Mechanics of Deformable Solids. Non-classical theories of vibrations of rods, plates and shells), Moscow, VINITI, 1973, vol. 5, 272 p.

  24. Rao S.S. Mechanical Vibrations, Prentice Hall, 2019, 1084 p.

  25. Lurie S., Solyaev Y., Ustenko A. Optimal Damping Behavior of a Composite Sandwich Beam Reinforced with Coated Fibers, Applied Composite Materials, 2019, vol. 26, pp. 389ndash;408. DOI: 10.1007/s10443-018-9698-9


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход