Digital antenna array signal bearing accuracy improving


DOI: 10.34759/trd-2021-120-10

Аuthors

Oreshkin V. I.1*, Meleshin Y. M.2**, Tsvetkov V. K.1***

1. National Research University of Electronic Technology, Bld. 1, Shokin Square, Zelenograd, Moscow, Russia, 124498
2. National Research University of Electronic Technology "MIET", 1, Shokin Square, Zelenograd, Moscow, 124498, Russia

*e-mail: oreshkinvi@gmail.com
**e-mail: i@imym.ru
***e-mail: tsvetkov_vk@mail.ru

Abstract

This article discusses technical solutions for the development of receiving device for a spacecraft with a possibility of direction of arrival (DOA) estimation. The device must provide DOA) estimation of the incoming signal with a given accuracy and statistical characteristics under typical conditions for a spacecraft (weak signal, low consumption, small size). To solve this problem, it is proposed to use well-known sum-difference method of DOA estimation based on a small-size antenna array with digital diagramming (DBF). DBF antenna is a type of active antenna array, each channel is a separate receiver with digital signal processing. The formation of the phase and amplitude distribution in the antenna aperture is carried out in digital form. If we have information about the signals in separate channels of the antenna array, it is possible to use correlation algorithms for DOA estimation. For example, MUltiple SIgnal Classification algorithm (MUSIC). The essence of the algorithm is to calculate the eigenvalues of the correlation matrix formed from signals in various channels of the antenna array. This algorithm makes it possible to use the total energy of a data packet, since the values of the correlation matrix contain the integral result averaging the thermal noise. However, this approach is computationally expensive. It is necessary to carry out several convolution operations to form the correlation matrix. Instead, it is proposed to use the phase-interferometry direction finding (DF) method with use an only one convolution operation per antenna array channel to improve DF accuracy. The convolution operation is performed on the received signal, stored in memory, and the detected data to accumulate energy and reduce the effect of noise on the DF result. Due to the very weak signal against noise background, signal processing is carried out in several stages. The receiving signal is filtering and Doppler shift is compensating. Then an approximate DOA estimation is made. The resulting direction estimate is used to form the main beam of the digital antenna array. The detected signal data is used as coefficients to compress the entire packet and increase the energy of the signal to increase DF accuracy.

Keywords:

bearing signals, direction of arrival detection, space communication, digital antenna array, digital beamforming

References

  1. D.R. Rods. Vvedenie v monoimpulrsquo;snuyu radiolokatsiyu (Introduction to monopulse), Moscow, Sovetskoe radio, 1960, 160 p.

  2. Lyalin K.S., Chistuhin V.V., Oreshkin V.I., Chirkunova J.V. Digital beamforming multibeam antenna array design, 19th International Crimean Conference Microwave and Telecommunication Technology (CriMiCo — 2009), 2009, pp. 417-418.

  3. Shmachilin P.A., Shumilov T.Yu. Trudy MAI, 2019, no. 109. URL: http://trudymai.ru/eng/published.php?ID=111382. DOI: 10.34759/trd-2019-109-12

  4. Oreshkin V.I. Otsenka stepeni vliyaniya destabiliziruyushchikh faktorov na kharakteristiki tsifrovoi antennoi reshetki (Destabilizing factors influence research for the characteristics of a digital antenna array), Doctorrsquo;s thesis, Moscow, GUP NPTs laquo;SPURTraquo;, 2009, 169 p.

  5. Merkulova Zh.V., Oreshkin V.I., Tsvetkov V.K. Estestvennye i tekhnicheskie nauki. 2017, no. 5(107), pp. 185-188.

  6. Oreshkin V.I., Lyalin K.S., Maksimovskaya A.I., Merkulova Zh.V., Chistyukhin V.V. Izvestiya vysshikh uchebnykh zavedenii. Elektronika, 2016, vol. 21, no. 3, pp. 254-260.

  7. Chirkunova Zh.V. Prostranstvennaya obrabotka signalov v tsifrovykh antennykh reshetkakh (Spatial signal processing in digital antenna arrays), Doctorrsquo;s thesis, Moscow, GUP NPTs laquo;SPURTraquo;, 2009, 161 p.

  8. Merkulova Zh.V., Oreshkin V.I., Tsvetkov V.K. Estestvennye i tekhnicheskie nauki, 2017, no. 5 (107), pp. 182-184.

  9. Ovchinnikova E.V., Rybakov A.M. Trudy MAI, 2012, no. 52. URL: http://trudymai.ru/eng/published.php?ID=29558

  10. Kondratrsquo;eva S.G. Trudy MAI, 2012, no. 52. URL: http://trudymai.ru/eng/published.php?ID=29560

  11. Suchkov A.V. Trudy MAI, 2016, no. 86. URL: http://trudymai.ru/eng/published.php?ID=66408

  12. Chistyakov V.A. Trudy MAI, 2020, no. 115. URL: http://trudymai.ru/eng/published.php?ID=119921. DOI: 10.34759/trd-2020-115-07

  13. Chistyakov V.A. Trudy MAI, 2019, no. 109. URL: http://trudymai.ru/eng/published.php?ID=111394. DOI: 10.34759/trd-2019-109-15

  14. Chistyakov V.A. Trudy MAI, 2019, no. 105. URL: http://trudymai.ru/eng/published.php?ID=104239

  15. Dzhigan V.I., Kurganov V.V. Telekommunikatsii, 2021, no. 2. DOI:10.31044/1684-2588-2021-0-2-8-16

  16. Kurganov V.V., Dzhigan V.I. Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh system, 2020, no. 4, pp. 159-168. DOI: 10.31114/2078-7707-2020-4-159-168

  17. Djigan V.I., Kurganov V.V. Least Squares Criterion Adaptive Filtering Algorithms as Tools for Calibration of Arrays with Digital Beamforming, 12th International Conference on Antenna Theory and Techniques (ICATT-2020), September 2020. DOI: 10.1109/UkrMW49653.2020.9252686

  18. Dzh. Gudman. Statisticheskaya optika (Statistical optics), Moscow, Mir, 1988, 528 p.

  19. Lyalin K.S., Khasanov M.S., Meleshin Yu.M., Kuzrsquo;min I.A. Trudy MAI, 2018, no. 103. URL: http://trudymai.ru/eng/published.php?ID=100800

  20. Oreshkin V.I., Lyalin K.S., Khasanov M.S., Meleshin Yu.M., Dovgalrsquo; T.A. Izvestiya vysshikh uchebnykh zavedenii. Elektronika, 2018, vol. 23, no. 4, pp. 371-378. DOI: 10.24151/1561-5405-2018-23-4-371-378


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход