Digital antenna array signal bearing accuracy improving


DOI: 10.34759/trd-2021-120-11

Аuthors

Pavlov A. N.*, Pavlov D. A.*, Umarov A. B.*

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: vka@mil.ru

Abstract

In the course of the research and development works performing on a spacecraft creation and development (a small spacecraft in particular), the important and integral condition of studying the onboard systems capabilities of a small spacecraft consists in performing analysis and evaluation of its structural states architecture. These states reflect both functional and technological specifics of the small spacecraft control. One of the primary tasks associates with the necessity of structural and functional survivability evaluating of the subsystems and a spacecraft as a whole, which often has to be performed under conditions of uncertainty due to the impossibility of simulating the whole spectrum of the space medium conditions. With a view to the existing uncertainty, it is necessary to consider all possible modes of the system development or degradation while its separate elements failure, i.e. pessimistic, optimistic and intermediate scenarios. The structural analysis of the small spacecraft onboard system functioning begins, as a rule, with plotting a diagram of the object functional integrity, representing a logically universal graphical tool for the structural representation of the system objectsrsquo; properties under study. Functional integrity diagrams allow representing correctly both all traditional types of structural diagrams (block diagrams, fault trees, event trees, connectivity graphs with cycles) and a crucially new class of non-monotonic structural models of various properties of the studied systems. The functional integrity diagram of the small spacecraft onboard system allows graphical representation of logical conditions for their own functions implementation by the elements and subsystems of the small spacecraft. It allows representing also the modeling goals, i.e. logical conditions for the studied system property implementation, such as, the system reliability or failure, safety or accident emergence, these or that operation modes implementation of the small spacecraft onboard control system, etc.

Keywords:

small spacecraft, structural and functional survivability, motion control system, operating modes

References

  1. Sevastrsquo;yanov N.N., Andreev A.I. Osnovy upravleniya nadezhnostrsquo;yu kosmicheskikh apparatov s dlitelrsquo;nymi srokami ekspluatatsii (Reliability Management Fundamentals of Spacecraft with Long Service Life: A Study Guide), Tomsk, Izd. dom Tomskogo gosudarstvennogo universiteta, 2015, 265 p.

  2. Kolodezhnyi L.P., Chernodarov A.V. Nadezhnostrsquo; i tekhnicheskaya diagnostika (Reliability and technical diagnostics), Moscow, VVA im. prof. N.E. Zhukovskogo i Yu.A. Gagarina, 2010, 452 p.

  3. Borodin V.V. Trudy MAI, 2012, no. 58. URL: http://trudymai.ru/eng/published.php?ID=33036

  4. Bykov A.P., Piganov M.N. Trudy MAI, 2021, no. 116. URL: http://trudymai.ru/eng/published.php?ID=121012. DOI: 10.34759/trd-2021-116-05

  5. Manuilov Ju.S., Pavlov A.N., Pavlov D.A., Slinrsquo;ko A.A. The Technique of Informational Interaction Structural-Parametric Optimization of an Earthrsquo;s Remote Sensing Small Spacecraft Cluster, Cybernetics and Algorithms in Intelligent Systems. Proceedings of 7th Computer Science On-line Conference, 2018, vol. 3, pp. 155 — 166.

  6. Vasilrsquo;kov Yu.V., Timoshenko A.V., Sovetov V.A., Kirmelrsquo; A.S. Trudy MAI, 2019, no. 108. URL: http://trudymai.ru/eng/published.php?ID=109557. DOI: 10.34759/trd-2019-108-16

  7. Raikunova G.G. Ioniziruyushchie izlucheniya kosmicheskogo prostranstva i ikh vozdeistvie na bortovuyu apparaturu kosmicheskikh apparatov (Ionizing radiation from outer space and its impact on the onboard equipment of spacecraft), Moscow, Fizmatlit, 2013, 256 p.

  8. Yarmolik V.N., Vashinko Yu.G. Informatika, 2011, no. 2, pp. 92 — 103.

  9. Aleshin E.N., Zinovrsquo;ev S.V., Kopkin E.V., Osipenko S.A., Pavlov A.N., Sokolov B.V. Sistemnyi analiz organizatsionno-tekhnicheskikh sistem kosmicheskogo naznacheniya (System analysis of organizational and technical systems for space purposes), Saint Petersburg, VKA imeni A.F. Mozhaiskogo, 2018, 357 p.

  10. Mehdi Jafari. Optimal redundant sensor configuration for accuracy increasing in space inertial navigation system, Aerospace Science and Technology, 2015, vol. 47, pp. 467 — 472. DOI: 10.1016/j.ast.2015.09.017

  11. Pavlov A.N., Vorotyagin V.N., Slinrsquo;ko A.A., Informatsiya i kosmos, 2019, no. 2, pp. 139 — 147.

  12. Pavlov A.N., Vorotyagin V.N., Kulakov A.Yu., Umarov A.B. Informatizatsiya i svyazrsquo;, 2020, no. 5, pp. 132 — 140.

  13. Filatov A.V., Tkachenko I.S., Tyugashev E.V., Sopchenko E.V. Materialy Mezhdunarodnoi konferentsii i molodezhnoi shkoly laquo;Informatsionnye tekhnologii i nanotekhnologiiraquo;, Samara, Samarskii nauchnyi tsentr RAN, 2015, pp. 290 — 294.

  14. Okhtilev M.Yu., Sokolov B.V., Yusupov R.M. Intellektualrsquo;nye tekhnologii monitoringa i upravleniya strukturnoi dinamikoi slozhnykh tekhnicheskikh oblaquo;ektov (Intelligent technologies for monitoring and controlling structural dynamics of complex technical objects), Moscow, Nauka, 2006, 410 p.

  15. Zemlyakov S.D., Rutkovskii V.Yu., Silaev A.V. Avtomatika i telemekhanika, 1996, no. 1, pp. 3 — 20.

  16. Pavlov A.N. Trudy SPIIRAN, 2013, no. 5, pp. 143 — 168.

  17. Pavlov A.N., Pavlov D.A., Vorotyagin V.N., Umarov A.B. Structural and functional analysis of supply chain reliability in the presence of demand fluctuations, Proceedings of Models and Methods for Researching Information Systems in Transport minus;2020, 2020, vol. 2803, pp. 61 — 66.

  18. Polenin V.I., Ryabinin I.A., Svirin S.K., Gladkova I.A. Primenenie obshchego logiko—veroyatnostnogo metoda dlya analiza tekhnicheskikh, voennykh organizatsionno—funktsionalrsquo;nykh sistem i vooruzhennogo protivoborstva: monografiya (The general logical-probabilistic method application for the analysis of technical, military organizational-functional systems and armed confrontation: monograph), Saint Petersburg, RAEN, 2011, 416 p.

  19. Akimov E.V., Kuznetsov M.N. Trudy MAI, 2010, no. 40. URL: http://trudymai.ru/eng/published.php?ID=22873

  20. Kalinov M.I., Rodionov V.A. IX Vserossiiskaya nauchno-prakticheskaya konferentsiya po imitatsionnomu modelirovaniyu i ego primeneniyu v nauke i promyshlennosti (IMMOD-2019): sbornik trudov, Ekaterinburg, Izd-vo Uralrsquo;skogo gosudarstvennogo pedagogicheskogo universiteta, 2019, pp. 434 — 438.

  21. Zavedeev A.I. Trudy VIII mezhdunarodnogo nauchno-tekhnicheskogo seminara laquo;Sovremennye tekhnologii v zadachakh upravleniya, avtomatiki i obrabotki informatsiiraquo;, Moscow, Izd-vo MAI, 1999, pp. 344 — 345.

  22. Kirilin A.N., Akhmetov R.N., Shakhmatov E.V., Tkachenko S.I., Baklanov A.I. et al. Opytno-tekhnologicheskii malyi kosmicheskii apparat laquo;AIST-2Draquo; (The laquo;AIST-2Draquo; experimental and technological small spacecraft), Samara, Izd-vo SamNTs RAN, 2017, 324 p.

  23. Shipov M.G. Vestnik Samarskogo universiteta. Aviatsionnaya i raketno-kosmicheskaya tekhnika tekhnologii i mashinostroenie, 2019, no. 2, vol. 18, pp. 121 — 127. DOI: 10.18287/2541-7533-2019-18-2-121-127


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход