Investigation of the physical features of aviation systems using mathematical modeling using the example of an air cooling system


DOI: 10.34759/trd-2021-120-15

Аuthors

Popov E. P.*, Vereikin A. A.**, Nasonov F. A.***

PJSC UAC Sukhoi Design Bureau, 23A, Polikarpova str., Moscow, 125284, Russia

*e-mail: zhe3754@yandex.ru
**e-mail: aautres@gmail.com
***e-mail: nasonovf2006@mail.ru

Abstract

The relevance of the research issue lies in the need to check and adjust algorithms of aviation systems at each stage of their development. In connection with the expansion of the application scope of aircraft developed by PJSC laquo;Sukhoi Companyraquo;, a need arises to solve the problem of geometry optimization in joint hydraulic and thermal calculations. For this purpose, special software complexes are being employed that allow replacing real complex systems structures with structural schemes in the form of blocks, i.e. mathematical models that fully describe these systemsrsquo; structures. Practice has shown that, along with the existing methods for technical condition monitoring of the air cooling system (SVO) as part of a prospective unmanned aerial vehicle (UAV), there is a necessary to perform automated monitoring of the trend of product parameters during flight tests [1]. Let us consider how the method applied in the presented article will affect economic efficiency on the example of a PJSC laquo;Sukhoi Companyraquo; prospective unmanned aerial vehicle (UAV). The insurance cost of the aircraft equals to 1.3 billion rubles, the insurance cost of the ground control point of a promising UAV is designated at 145 million rubles. Thus, the total price of the manufactured goods is 1.445 billion rubles [1]. The price is determined based on the cost recovery principle, where no more than 20% is the cost of the head contractorrsquo;s work. In summary we get the price of the goods produced of 1.445 million rubles, and the cost of the goods produced of 290 million rubles (20% of 1.445 billion rubles) [2]. To achieve this goal, the following tasks were identified and solved by the implementation and development of the algorithms SVO in the SimInTech PC, which allowed improving the efficiency of the workflow and eliminating system shortcomings. The structure of the SVO mathematical model building in the SimInTech PCSVO is a complex-branched network of pipelines, including various units such as heat exchangers, dampers, dehumidifiers, check valves, overpressure sensors and temperature sensors. Calculation of such systems manually or with the state-of-the-artn computational fluid dynamics software systems requires significant computational resources and labor intensity. Due to the laquo;Set conditionsraquo; block, various situations of electric fans operation (EV) are modeled, which ultimately allows apprehending of the system behavior in the situation being considered. It offers the possibility to simulate failure situations and timely detect and eliminate the system weaknesses. The method for creating the SVO mathematical model, which includes the physical processes, occurring in the system, and control algorithms, allows developing the basics for solving the problem of reliable control of the technical condition of the SVO as part of a promising UAV during operation. It allows as well detecting malfunctions occurrence, preventing thereby the irreversible process of the system destruction. The three considered cases of the SVO functioning simulation clearly demonstrate that application of the proposed method of working out allows identify the system operation shortcomings and increase the workflow efficiency.

Keywords:

air cooling system, mathematical model, SimInTech software package, correction of air cooling system algorithms

References

  1. Avduevskii V.S. Osnovy teploperedachi v aviatsionnoi i raketnoi tekhnike (Fundamentals of heat transfer in aviation and rocket technology), Moscow, OBORONGIZ, 1960, 389 p.

  2. Bonder V.A. Sistemy upravleniya letatelrsquo;nymi apparatami (Aircraft control systems), Izd-vo Mashinostroenie, 1973, 504 p.

  3. Donskov A.V., Mishurova N.V., Solovrsquo;ev S.V. Aerospace MAI journal, 2018, vol. 25, no. 3, pp. 151-160.

  4. Voronin G.I., Verba M.I. Konditsionirovanie vozdukha na letatelrsquo;nykh apparatakh (Air conditioning on aircraft), Moscow, Izd-vo Mashinostroenie, 1965, 480 p.

  5. Nenarokomov A.V., Semenov D.S., Dombrovskii L.A. Teplovye protsessy v tekhnike, 2018, vol. 10, no. 7-8.

  6. Krasnoshchekov E.A., Sukomel A.S. Zadachnik po teploperedache (Task book on heat transfer), Moscow, Energiya, 1980, 288 p.

  7. Kutateladze S.S., Borishanskii V.M. Spravochnik po teploperedache (Handbook of heat transfer), Leningrad-Moscow, GEI, 1958, 418 p.

  8. Spravka po SimInTech. URL: https://help.simintech.ru/#o_simintech/o_simintech.html

  9. Shevelrsquo;ko P.S., Akindeev A.E., Braga V.G., Konstantinov V.D., Sukhanov S.S., Tikhomirov Yu.P. Spravochnik aviatsionnogo tekhnika (Handbook of aviation equipment), Moscow, Voenizdat, 1974, 592 p.

  10. Dillaber E., Kendrik L., Dzhin V., Reddi V. Komponenty i tekhnologii, 2011, no. 10, pp. 172-180.

  11. Brodskii Yu.I. Materialy konferentsii laquo;Imitatsionnoe modelirovanie. Teoriya i praktikaraquo; IMMOD-2013, Kazanrsquo;, Fen Akademii nauk RT, 2013, vol. 1, pp. 114-119.

  12. Ganeev A.R. Avtomatizatsiya, telemekhanizatsiya i svyazrsquo; v neftyanoi promyshlennosti, 2012, no. 4, pp. 48-51.

  13. Ruzakov M.A., Kruglyaeva E.A., Malenkova N.M. Trudy MAI, 2011, no. 48. URL: http://trudymai.ru/eng/published.php?ID=27168

  14. Ulrsquo;yashin V.Yu. Trudy MAI, 2011, no. 48. URL: http://trudymai.ru/eng/published.php?ID=27170

  15. Ageeva N.G., Rebii E.Yu. Trudy MAI, 2011, no. 49, URL: http://trudymai.ru/eng/published.php?ID=28126amp;PAGEN_2=2

  16. Manturov D.V. Trudy MAI, 2012, no. 50. URL: http://trudymai.ru/eng/published.php?ID=28857amp;PAGEN_2=2

  17. Pogosyan M.A., Vereikin A.A. Trudy MAI, 2020, № 113. URL: http://trudymai.ru/eng/published.php?ID=118156. DOI: 10.34759/trd-2020-113-11

  18. Bagretsov S.A., Chernaya T.E., Karpenko K.A., Tarasov A.G. Trudy MAI, 2020, no. 115. URL:http://trudymai.ru/eng/published.php?ID=119927. DOI: 10.34759/trd-2020-115-11

  19. Ananenkov A.E., Marin D.V., Nuzhdin V.M., Rastorguev V.V., Sokolov P.V. Trudy MAI, 2016, no. 91. URL: http://trudymai.ru/eng/published.php?ID=75662

  20. Pavlova N.V., Smeyukha A.V. Trudy MAI, 2016, no. 87. URL: http://trudymai.ru/eng/published.php?ID=69703


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход