Methods of calculation of ribbed plates for strength and stability


DOI: 10.34759/trd-2021-121-08

Аuthors

Malinin G. V.

Company «Tupolev», 17, nab. Akademika Tupoleva, Moscow, 105005, Russia

e-mail: malinin2002@yandex.ru

Abstract

The desire to increase the reliability of structures forces engineers and designers not only to turn to new materials, in particular composite materials, but also to the introduction of additional reinforcing elements that do not significantly affect the change in the weight of the structure. As such effective means is the use of stiffeners, which have become widespread in engineering practice. The foundations of analytical methods of structural mechanics applied to the problems of calculating ribbed plates and shells were laid by Russian scientists S.P. Timoshenko, I.G. Bubnov, P.F. Papkovich, V.V. Novozhilov, A.I. Birger. Currently, many scientists are also engaged in the calculation of ribbed plates and shells for strength and stability. In this paper, two analytical methods for calculating ribbed plates supported by a cross system of stiffeners are proposed: a method for calculating strength in determining the stress-strain state and a method for calculating stability in determining the critical load. The calculation of the stress-strain state and stability of the structures under consideration is associated with significant mathematical difficulties that an engineer can currently overcome with the help of modern mathematical packages. In this paper, the technique of strength analysis of the stress-strain state of a ribbed plate is implemented in the Mathcad package, and the stability problem is successfully solved in the Maple package. The calculation of the strength and stability of ribbed plates reinforced with ribs placed crosswise or parallel to one of the sides of the plate is considered. The proposed computational mathematical model is based on the replacement of the original ribbed plate with an equivalent flat isotropic plate. The stiffness characteristics of the equivalent plate are calculated taking into account the contribution of the reinforcing elements of the ribbed plate. It is assumed that the thin-walled structure is supported by a sufficiently large number of ribs located at a sufficiently small distance fr om each other, which allows their «smearing» relative to the median surface of the plate.Control examples of calculation according to the proposed methods are given. The results of analytical calculations are in good agreement with the results of numerical analysis performed by the finite element method in the MSC.Nastran/Patran package.The proposed methods will allow the engineer at the stage of preliminary calculation and design of the structure to identify the features of its stress-strain state, such as stress concentration sites wh ere it is necessary to reduce the size of the finite element grid during the refinement calculation in industrial packages of finite element analysis.

Keywords:

rectangular ribbed plate, analytical methods, stress-strain state, strength, stability

References

  1. Kushnarenko I.V. Stroitel’naya mekhanika inzhenernykh konstruktsii i sooruzhenii, 2014, no. 2, pp. 57-62.
  2. 2.Ovcharov A.A., Brylev I.S. Sovremennye problemy nauki i obrazovaniya, 2014, no. 3, pp. 63-71.
  3. Dudchenko A.A., Sergeev V.N. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mekhanika, 2017, no. 2, pp. 78-98.
  4. Zhgutov V.M. Inzhenerno-stroitel’nyi zhurnal, 2009, no. 6 (8), pp. 16-24.
  5. Nerubailo B.V., Vu S.D. Aerospace MAI Journal, 2013, vol. 20, no. 3, pp. 173-185.
  6. Firsanov V.V., Zoan K.Kh. Trudy MAI, 2018, no. 103. URL: http://trudymai.ru/eng/published.php?ID=100589
  7. Erkov A.P., Dudchenko A.A. Trudy MAI, 2018, no. 103. URL: http://trudymai.ru/eng/published.php?ID=100622
  8. Firsanov V.V., Vo A.Kh., Chan N.D. Trudy MAI, 2019, no. 104. URL: http://trudymai.ru/eng/published.php?ID=102130
  9. Karpov V.V., Ignat’ev O.V., Semenov A.A. Inzhenerno-stroitel’nyi zhurnal, 2017, no. 6 (74), pp. 147-160.
  10. John Wilson, S. Rajasekaran. Elastic stability of all edges clamped stepped and stiffened rectangular plate under uni-axial, bi-axial and shearing forces, Meccanica, 2013, vol. 48, no. 10, pp. 2325–2337. DOI:10.1007/s11012-013-9751-6
  11. Goloskokov D.P. Materialy III mezhdunarodnoi konferentsii «Ustoichivost’ i protsessy upravleniya» Saint Petersburg, Izdatel’skii Dom Fedorovoi G.V., 2015, pp. 351-352.
  12. Goloskokov D.P. Materials Physics and Mechanics (MPM), 2016, vol. 26, no. 1, pp. 66–69.
  13. Goloskokov D.P. Calculation of the ribbed plate in the mixed form «deflection — function of efforts», 2015 International Conference «Stability and Control Processes» in Memory of V.I. Zubov (SCP), 2015, pp. 386-388. DOI:10.1109/SCP.2015.7342170
  14. Goloskokov D.P. XXVI Mezhdunarodnaya konferentsiya «Matematicheskoe i komp’yuternoe modelirovanie v mekhanike deformiruemykh sred i konstruktsii»: tezisy dokladov, Saint Petersburg, ID »FARMindeks», 2015, pp. 108–110.
  15. Karpov V.V. Prochnost’ i ustoichivost’ podkreplennykh obolochek vrashcheniya: Modeli i algoritmy issledovaniya prochnosti i ustoichivosti podkreplennykh obolochek vrashcheniya (Strength and stability of reinforced shells of rotation: Models and algorithms for the study of strength and stability of reinforced shells of rotation), Moscow, Fizmatlit, 2010, Part. 1, 285 p.
  16. Karpov V.V. Prochnost’ i ustoichivost’ podkreplennykh obolochek vrashcheniya. Vychislitel’nyi eksperiment pri staticheskom mekhanicheskom vozdeistvii (Strength and stability of reinforced shells of rotation. Computational experiment under static mechanical action), Moscow, Fizmatlit, 2011, Part. 2. 248 p.
  17. Karpov V.V. Models of the shells having ribs, reinforcement plates and cutouts, International Journal of Solids and Structures, 2018, no. 146, pp. 117-135. DOI:10.1016/j.ijsolstr.2018.03.024
  18. Mahboubi Nasrekani F., Eipakchi H.R. An Analytical Procedure for Buckling Load Determination of an Axisymmetric Cylinder with Non-Uniform Thickness Using Shear Deformation Theory, Journal of Mechanical Engineering, 2017, vol. 1, no. 2, pp. 211–218. DOI:10.22060/mej.2017.12557.5364
  19. Kipiani G. Definition of critical loading on three-layered plate with cuts by transition from static problem to stability problem, Contemporary Problems in Architect and Construction: Selected peer reviewed papers the 6th International Conference on Contemporary Problems of Architect and Construction, June 24-27, 2014, Ostrava, Czech Republic / Ed. by D. Kubečková, Trans. Tech. Publications, Switzerland, pp. 143-150. DOI:10.4028/www.scientific.net/AMR.1020.143
  20. Pukhlii V.A., Pukhlii K.V. Teoriya mekhanizmov i mashin, 2019, vol. 17, no. 3 (43), pp. 86-98.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход