Depreciation of automatic spacecraft when landing on planets and their satellites, taking into account the elasticity of the landing device design


DOI: 10.34759/trd-2021-121-10

Аuthors

Bernikov A. S., Petrov Y. A., Sergeev D. V.*, Shtokal A. O.

Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

*e-mail: sergeevdv@laspace.ru

Abstract

The spacecraft touchdown on the surface of planets and their satellites is one of the crucial flight stages. Since the planets surfaces are insufficiently studied, the kinematic parameters of the spacecraft movement may vary in a wide range.

For the spacecraft shock absorbing while touchdown, landing devices are being used, which should ensure a touchdown with permissible overloads and a stable position of the craft on the surface.

The landing gear consists of three or four supports, depending on the power scheme of the landing vehicle.

The craft shock absorbing while landing is performed due to energy absorbers placed in the shock absorbers of the landing device. A rod, honeycomb, pipe and tape (flat rod) are being applied as single-use energy absorbers, which absorb the energy of the craft while landing due to plastic deformation. The accounting for the landing device design elasticity will allow correctly determining the dynamic loads and stability area of the craft while landing, which is especially important when landing on comets or satellites with low gravity. When solving the problem of landing dynamics, the equations of motion of the landing gear supports are employed, with account for the elastic deformation of the structure.

The regard for the elastic deformation energy accumulated in the elements of the landing gear and in the places where they are attached to the body will allow determining the dynamic loads on the apparatus and structural elements, as well as correctly determining the area of the apparatus stability to overturning.

To determine the friction forces originating from the contact interaction of the heel of the landing device with the ground, experimental studies on the of friction coefficients measurement are being used. Tuff, basalt, foam concrete of different strength, sinter sand were being considered as analogous soils. AMG-6 aluminum alloy, MA2-1magnesium alloy, and OT4titanium alloy were being considered as a material for the heel of the landing gear support. It follows from the experiments that for all combinations of rubbing metal-ground pairs, the friction process is oscillatory.

When a spacecraft tpuchdown on bodies with low gravity, such as the Mars satellite Phobos, for which the acceleration of gravity is equal to df 0.005 m / s2, and even more so when landing on comets, for example Churyumov-Gerasimenko, for which the acceleration of gravity is up to 80 thousand times less than on Earth, accounting for the elastic forces of the landing device design when solving the problem of landing dynamics is essential. On the «Rosetta» spacecraft, three landing gear supports contain clamping motors to ensure landing on a slope without tipping over, which is possible due to the energy of elastic deformation of the supports.

When performing works related to soil drilling, the spacecraft must be securely fixed on the touchdown surface of satellites (comets). The clamping motors application here will be inefficient, since high axial forces are required while drilling, and the drilling time is rather long. In this case of touchdown, the spacecraft can be held on the surface with harpoons.

Keywords:

automatic spacecraft, landing dynamics, landing device, energy absorber, absorber, stability of the vehicle, angular velocity

References

  1. Bazilevskii A.T., Grigor’ev E.I., Ermakov S.N. et al. Proektirovanie spuskaemykh avtomaticheskikh kosmicheskikh apparatov: Opyt razrabotki dialogovykh protsedur (Designing descent automatic spacecraft: The experience of developing dialog procedures), Moscow, Mashinostroenie, 1985, 264 p.
  2. Bazhenov V.I., Osin M.S. Posadka kosmicheskikh apparatov na planet (Spacecraft landing on planets), Moscow, Mashinostroenie, 1978, 159 p.
  3. Petrov Yu.A., Makarov V.P., Kolobov A.Yu., Aleshin V.F. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana, 2010, no. 04, pp. 8.
  4. Tsygankov O.S. Patent № 2725103 RU, MPK B64G 1/62(2006.01), 29.06.2019.
  5. Belitskii D.S., Zharkov M.N., Shchiblev Yu.N., Chetkin S.V., Lubnin A.V. Patent № 2521451 RU, MPK B64G 1/62(2006.01), 27.06.2012.
  6. Gushchin V.N. Pankratov A.D., Rodionov B.M. Osnovy ustroistva i konstruirovaniya kosmicheskikh apparatov (Fundamentals of device and construction of spacecraft: textbook for universities), Moscow, Mashinostroenie, 1992, 256 p.
  7. Gushchin V.N. Osnovy ustroistva kosmicheskikh apparatov (The basics of device spacecraft: Textbook for universities), Moscow, Mashinostroenie, 2003, 272 p.
  8. Voronin V.V. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2012, vol. 11, no. 4, pp. 52-58.
  9. Bukhgol’ts N.N. Osnovnoi kurs teoreticheskoi mekhaniki (The main course of theoretical mechanics), Moscow, Nauka, 1965, vol.1. — 486 p; 1966, vol.2. — 332 p.
  10. Gantmakher F.R. Teoriya matrits (Theory of matrices), Moscow, Nauka, 1967, 575 p.
  11. Yablonskii A.A., Nikiforova V.M. Kurs teoreticheskoi mekhaniki. — M.: KnoRus, 2011. — 603 s.
  12. Malyshev V.V., Starkov A.V., Titkov M.A. Trudy MAI, 2015, no. 79. URL: http://trudymai.ru/eng/published.php?ID=55790
  13. Kemurdzhian A.L., Gromov V.V., Cherkasov I.I., Shvarev V.V. Avtomaticheskie stantsii dlya izucheniya poverkhnostnogo pokrova Luny (Automatic stations for studying the surface cover of the Moon), Moscow, Mashinostroenie, 1976, 200 p.
  14. Ostoslavskii I.V., Strazheva I.V. Dinamika poleta (Flight dynamics), Moscow, Mashinostroenie, 1969, 499 pp.
  15. Buslaev S.P., Vorontsov V.A., Grafodatskii O.S. Trudy MAI, 2017, no. 96. URL: http://trudymai.ru/eng/published.php?ID=85909
  16. Churkin V.M. Trudy MAI, 2011, no. 49. URL: http://trudymai.ru/eng/published.php?ID=27969
  17. Aleksashkin S.N., Pichkhadze K.M., Finchenko V.S. Vestnik NPO im. S.A. Lavochkina, 2012, no. 2 (13), pp. 4-11.
  18. Bakulin V.N., Borzykh S.V., Voronin V.V. Aerospace MAI Journal, 2011, vol. 18, no. 5. pp. 211-218.
  19. Bakulin V.N., Borzykh S.V., Rodionov O.L., Markov M.V. 3-ya Mezhdunarodnaya konferentsiya i vystavka «Aviatsiya i kosmonavtika», Moscow, Izd-vo MAI, 2004. pp. 71 — 72.
  20. Buslaev S.P. Kosmicheskie issledovaniya, 1987, no. 2, pp. 186-192.
  21. Mikishev T.N. Eksperimental’nye metody v dinamike kosmicheskikh apparatov (Experimental methods in the dynamics of spacecraft), Moscow, Mashinostroenie, 1978, 248 p.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход