Experimental study of the accuracy of determining the time-frequency parameters of a pulse in a digital receiver with undersampling under a single-signal impact

DOI: 10.34759/trd-2021-121-14


Smolyakov A. V.*, Podstrigaev A. S.**

Saint Petersburg Electrotechnical University “LETI”, 5, str. Professora Popova, Saint Petersburg, 197376, Russia

*e-mail: andreismolyakow@gmail.com
**e-mail: ap0d@ya.ru


One can use digital receivers based on undersampling (sub-Nyquist receivers) to solve tasks of ESM, cognitive radio communication, electronic signals intelligence and passive radar. The main advantage of the sub-Nyquist receiver for the user is software adapting the characteristics to the current tasks and the signal-interference environment. The efficiency of the sub-Nyquist receiver largely depends on the accuracy of determining the time-frequency parameters of the received signals. Since we can consider any signal as a pulse during a long-term analysis of the signal situation, it is advisable to carry out the study for individual pulses with the accumulation of measurement statistics. We investigate the errors in determining the carrier frequency and pulse duration to estimate the accuracy of measurements on the device’s prototype. We obtained the results in the form of dependences on the carrier frequency and the duration of the received pulse. With a decrease in the pulse duration, the mathematical expectation and the standard deviation in determining the frequency increase. The average relative error in determining the pulse duration increases with decreasing pulse duration. The standard deviation of the error in determining the duration for long pulses is more significant than for short ones. The article describes in detail the reasons for these phenomena. The most critical errors, as expected, correspond to short pulses. Analyzing existing radio systems allows us to conclude that obtained errors are acceptable for wideband analysis tasks. An additional increase in the accuracy of determining the frequency-time parameters of the signal can be performed based on the approaches proposed in the paper.


undersampling, undersampling receiver, sub-Nyquist receiver, SDR, broadband analysis, wideband analysis, wideband sensing, time-frequency parameters


  1. Tsui J., Cheng Chi-Hao. Digital techniques for wideband receivers. 3nd ed., SciTech Publishing Inc., New York, United States, 2015, 608 p. DOI: DOI:10.1049/SBRA511E
  2. Huang S., Zhang H., Sun H., Yu L., Chen L. Frequency estimation of multiple sinusoids with three sub-Nyquist channels, Signal Processing, 2017, vol. 139, pp. 96-101. DOI: 10.1016/j.sigpro.2017.04.013
  3. Liu C., Chen K., Zhang J., Wang Y., Wang H. Using FFT to reduce the computational complexity of sub-Nyquist sampling based wideband spectrum sensing, Journal of Physics: Conference Series, 2019, no. 1237. DOI: 10.1088/1742-6596/1237/2/022004
  4. Mishali M., Eldar Y. C. Sub-nyquist sampling, IEEE Signal Processing Magazine, 2011, vol. 28, no. 6, pp. 98-124.
  5. Botov V.A., Goryuntsov I.S., Pogrebnoi D.S., Krenev A.N., Toporkov V.K. Sistemy sinkhronizatsii, formirovaniya i obrabotki signalov, 2013, no. 2 (4), pp. 122-124.
  6. Lesnikov V.A., Naumovich T.V., Chastikov A.V., Garsh D.G. DSPA: Voprosy primeneniya tsifrovoi obrabotki signalov, 2016, no. 2(6), pp. 239-243.
  7. Kondakov D.V., Lavrov A.P. Radiotekhnika, 2019, no. 9 (13), pp. 20-26. DOI: 10.18127/j00338486-201909(13)-02
  8. Lesnikov V.A., Naumovich T.V., Chastikov A.V. IX Vserossiiskaya nauchno-tekhnicheskaya konferentsiya «Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem — 2020»: sbornik trudov, Moscow, IPPM RAN, 2020, no. 3, pp. 194-200.
  9. Masalkin A.A., Kolesnik A.V., Protsenko P.A. Trudy MAI, 2019, no. 106. URL: http://trudymai.ru/eng/published.php?ID=105700
  10. Kizima S.V. Elektrosvyaz’, 2018, no. 11, pp. 68-74. URL: https://radian-m.ru/docs/article/2018ESV11.pdf
  11. Likhachev V.P., Semenov V.V., Veselkov A.A., Demchuk A.A. XVI Mezhdunarodnaya nauchno-metodicheskaya konferentsiya «Informatika: problemy, metodologiya, tekhnologii»: sbornik trudov, Voronezh, Izd-vo Nauchno-issledovatel’skie publikatsii, 2016, pp. 179 — 184.
  12. Voskoboinikov M.A., Podstrigaev A.S., Davydov V.V. Trudy MAI, 2019, no. 104. URL: http://trudymai.ru/eng/published.php?ID=102392
  13. Axell E., Leus G., Larsson E., Poor H. Spectrum Sensing for Cognitive Radio: State-of-the-Art and Recent Advances, IEEE Signal Processing Magazine, 2012, no. 29 (3), pp. 101-116. DOI:10.1109/msp.2012.2183771
  14. Quan Z., Cui S., Sayed A. H., Poor H. V. Optimal multiband joint detection for spectrum sensing in cognitive radio networks, IEEE transactions on signal processing, 2008, no. 57 (3), pp. 1128-1140. DOI: 10.1109/TSP.2008.2008540
  15. Aswathy G.P., Gopakumar K. Sub-Nyquist wideband spectrum sensing techniques for cognitive radio: A review and proposed techniques, AEU-International Journal of Electronics and Communications, 2019, vol. 104, pp. 44-57. URL: https://doi.org/10.1016/j.aeue.2019.03.004
  16. Ma Y., Gao Y., Liang Y. C., Cui S. Reliable and efficient sub-Nyquist wideband spectrum sensing in cooperative cognitive radio networks, IEEE Journal on Selected Areas in Communications, 2016, vol. 34, no. 10, pp. 2750-2762. DOI: 10.1109/JSAC.2016.2605998
  17. Rashidi M., Haghighi K., Owrang A., Viberg M. A wideband spectrum sensing method for cognitive radio using sub-Nyquist sampling, 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), IEEE, 2011, pp. 30-35. DOI: 10.1109/DSP-SPE.2011.5739182
  18. Sun H., Nallanathan A., Wang C.X., Chen Y. Wideband spectrum sensing for cognitive radio networks: a survey, IEEE Wireless Communications, 2013, vol. 20, no. 2, pp. 74-81.
  19. Ivanov S.B. Sistemy upravleniya, svyazi i radioelektronnoi bor’by. Tom XIII // Oruzhie i tekhnologii Rossii. Entsiklopediya. XXI vek (Control, communication and electronic warfare systems. Volume XIII // Arms and Technologies of Russia. Encyclopedia. XXI Century), Moscow, Oruzhie i tekhnologii, 2006, 695 p.
  20. Vladimirov V.I., Likhachev V.P., Shlyakhin V.M. Antagonisticheskii konflikt radioelektronnykh sistem. Metody i matematicheskie modeli (Antagonistic conflict of electronic systems. Methods and mathematical models), Moscow, Radiotekhnika, 2004, 384 p.
  21. Maklashov V.A., Piganov M.N. Trudy MAI, 2020, no. 113. URL: http://trudymai.ru/eng/published.php?ID=118081. DOI: 10.34759/trd-2020-113-07
  22. Perunov Yu.M., Matsukevich V.V., Vasil’ev A.A. Zarubezhnye radioelektronnye sredstva. Kniga 2: Sistemy radioelektronnoi bor’by (Foreign radio-electronic means. Electronic Warfare Systems), Moscow, Radiotekhnika, 2010, book 2, 352 p.
  23. Likhachev V.P., Likhacheva N.V. Naukoemkie tekhnologii, 2010, vol. 11, no. 9, pp. 51-54.
  24. Kupriyanov A.I., Sakharov A.V. Teoreticheskie osnovy radioelektronnoi bor’by (The theoretical foundations of electronic warfare), Moscow, Vuzovskaya kniga, 2007, 356 p.
  25. Boev S.F., Zyuzin A.V., Kostrykin P.A et al. Trudy MAI, 2017, no. 94. URL: http://trudymai.ru/eng/published.php?ID=81121
  26. Barkhatov A.V. et al. Passivnaya kogerentnaya radiolokatsiya (Passive coherent radar), Saint Petersburg, Izd-vo SPbGETU «LETI», 2016, 163 p.
  27. Barkhatov A.V. et al. Innovatsii, 2013, no. 9 (179), pp. 8-13.
  28. Kupryashkin I.F., Sokolik N.V. Izvestiya vysshikh uchebnykh zavedenii Rossii. Radioelektronika, 2019, no. 1, pp. 39-55. URL: https://doi.org/10.32603/1993-8985-2019-22-1-39-47.
  29. Vorob’ev E.N., Verem’ev V.I., Kholodnyak D.V. Izvestiya vysshikh uchebnykh zavede``nii Rossii. Radioelektronika, 2018, no. 6, pp. 75-82. URL: https://doi.org/10.32603/1993-8985-2018-21-6-75-82
  30. Heunis S., Paichard Y., Inggs M. Passive radar using a software-defined radio platform and opensource software tools, IEEE National Radar Conference — Proceedings (RADAR), 2011, pp. 879-884. DOI:10.1109/RADAR.2011.5960663
  31. Smolyakov A.V., Podstrigaev A.S. Radiotekhnika, 2021, vol. 85, no. 9, pp. 95-107. DOI: 10.18127/j00338486-202109-09
  32. Podstrigaev A.S. T-Comm: Telekommunikatsii i transport, 2021, vol. 15, no. 10, pp. 11-17.
  33. Lyons R.G. Understanding digital signal processing, 3rd edition, Pearson Education India, 2004.


mai.ru — informational site MAI

Copyright © 2000-2024 by MAI