The concept of high-precision trajectory measurements using a coupled system of an onboard optical arc meter-interferometer and optical laser beacons


DOI: 10.34759/trd-2021-121-15

Аuthors

Vernigora L. V.*, Sysoev V. K.**, Kasmerchuk P. V.***, Dmitriev A. O.****

Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

*e-mail: vlv@laspace.ru
**e-mail: SysoevVK@laspace.ru
***e-mail: pavel.kazmerchuk@gmail.com
****e-mail: dao@laspace.ru

Abstract

As far as the transition to a submillisecond accuracy level of optical angle measurements in space is inevitable in the near future, and the joint use of an onboard space optical arc meter-interferometer and optical laser beacons will significantly increase the accuracy of measuring spacecraft equipped with beacons. The small mass-and-size characteristics of beacons and their low energy consumption allow retrofitting the devices already prepared for launch with optical laser beacons, without going beyond the limits of the spacecraft design mass saving.

A simplified version of the «OSIRIS» astrometric arc meter-interferometer of the microsecond accuracy level — the LIDA device for applied use is capable of achieving the accuracy of coordinates determining of the spacecraft equipped with optical laser beacons, almost four orders of magnitude higher than is currently achieved when near-Earth space monitoring. The LIDA arc meter-interferometer can be placed onboard a small spacecraft or be a passing load. GLONASS spacecraft observation by a space optical arc meter-interferometer of, provided they are equipped with optical laser beacons, will allow increasing coordinates accuracy determining of the spacecraft of this grouping to a centimeter level (or even better).

Spatial position measuring of a spacecraft in the interplanetary space is extremely important for correcting the spacecraft trajectory during interplanetary missions. Until now, there are still no autonomous navigation systems of this level. In search of an acceptable solution to this problem, the Americans are even making attempts to develop navigation principles for measuring pulsed radio emission of pulsars. Angular positions measurements of the spacecraft with the onboard optical laser beacon by a space optical arc meter-interferometer will lead to the errors by the position in the tangential direction even at the distances of one million kilometers, not exceeding the size of the spacecraft. These capabilities are unlikely to be in demand in the decades to come for practical navigation. However, they may be of interest to fundamental science, for example, to clarify the gravitational constant magnitude and the scale of the Solar System.

Keywords:

spacecraft, space interferometer, optical beacons, high-precision measurements

References

  1. Dmitriev A.L. Poluprovodnikovye istochniki sveta dlya sistem peredachi i obrabotki informatsii (Semiconductor light sources for the transmission and processing of information), Saint Petersburg, SPbGUITMO, 2006, 48 p.
  2. Bagrov A.V., Barabanov A.A., Vernigora L.V., Vyatlev P.A., Martynov M.B., Pichkhadze K.M., Sysoev V.K. Kosmicheskie issledovaniya, 2013, vol. 51, no. 4, pp. 1-9.
  3. Bagrov A.V., Vernigora L.V., Vyatlev P.A., Martynov M.B., Papchenko B.N., Sysoev V.K. Vestnik NPO im. S.A. Lavochkina, 2011, no. 4, pp. 37-43.
  4. Vernigora L.V., Pichkhadze K.M., Sysoev V.K. Trudy MAI, 2017, no. 95. URL: http://trudymai.ru/eng/published.php?ID=84553
  5. Vernigora L.V., Kazmerchuk P.V., Sysoev V.K., Dmitriev A.O. Trudy MAI, 2020, no. 114. URL: http://trudymai.ru/eng/published.php?ID=118698. DOI: 10.34759/trd-2020-114-12
  6. Ivanov N.M., Lysenko L.N. Ballistika i navigatsiya kosmicheskikh apparatov (Ballistics and spacecraft navigation), Moscow, Drofa, 2004, 544 p.
  7. Razygraev A.P. Osnovy upravleniya poletom kosmicheskikh apparatov (Spacecraft flight control basics), Moscow, Mashinostroenie, 1990, 475 p.
  8. Seleznev V.P., Kirst M.L. Sistemy navigatsii kosmicheskikh letatel’nykh apparatov (Spacecraft navigation systems), Moscow, Voenizdat, 1965, 208 p.
  9. Anisimov V.D., Batyr’ G.S., Men’shikov A.V., Shilin V.D. Sistema kontrolya kosmicheskogo prostranstva RF. URL: // http://www.vimpel.ru/skkp2.htm
  10. Pinigin G.I. Teleskopy nazemnoi opticheskoi astrometrii (Telescopes for ground-based optical astrometry), Nikolaev, Atoll, 2000, 108 p.
  11. Medved D.B. Vestnik svyazi, no. 4, 2001, pp. 154-157.
  12. Sokolov N.L. Trudy MAI, 2014, no. 77. URL: http://trudymai.ru/eng/published.php?ID=52950
  13. Molotov I.E., Vol’vach A.E., Konovalenko A.A., Fal’kovich I.S., Litvinenko L.N., Negoda A.A., Fedorov O.P., Lipatov B.N., Gorshenkov Yu.N., Agapov V.M., Tukkari Dzh., Lyu Sh. Kosmicheskaya nauka i tekhnologiya, 2004, vol. 10, no. 2-3, pp. 87-92.
  14. Konnikova V.K., Lekht E.E., Silant’ev N.A. Prakticheskaya radioastronomiya (Practical radio astronomy), Moscow, Izd-vo MGU, 2011, 304 p.
  15. Boyarchuk A.A., Bagrov A.V., Barabanov S.I. et al. Kosmicheskii astrometricheskii eksperiment OZIRIS (OZIRIS Astrometric Space Experiment), Fryazino, «Vek-2», 2005, 350 p.
  16. Alifanov O.M, Anfimov N.A., Belyaev V.S. et al. Fundamental’nye kosmicheskie issledovaniya. Astrofizika (Fundamental space research. Astrophysics), Moscow, FIZMATLIT, 2014, Book. 1, 431 p.
  17. Bagrov A.V. Dugomer-interferometr «OZIRIS» dlya mikrosekundnoi astrometrii — prezentatsiya. URL: http://www.myshared.ru/slide/630188/
  18. Global’naya navigatsionnaya sputnikovaya sistema GLONASS. Interfeisnyi kontrol’nyi dokument (redaktsiya 5.0.) (Global navigation satellite system GLONASS. Interface control document), Moscow, KNITs VKS, 2002, 60 p.
  19. Interfeisnyi kontrol’nyi dokument (redaktsiya 5.1). Tekhnicheskoe opisanie parametrov i signala GLONASS (Interface control document (revision 5.1.), 2008. URL: https://studizba.com/files/show/pdf/51137-1-interfeysnyy-kontrol-nyy-dokument.html
  20. Dyatlov S.A., Bessonov R.V. Vserossiiskaya nauchno-tekhnicheskaya konferentsiya «Sovremennye problemy opredeleniya orientatsii i navigatsii kosmicheskikh apparatov»: sbornik trudov. Moscow, Institut kosmicheskikh issledovanii RAN, 2009, pp. 11-32.
  21. Prokhorov M.E., Zakharov A.I., Mironov A.V., Nikolaev F.N., Tuchin M.S. Trudy 38 mezhdunarodnoi studencheskoi nauchnoi konferentsii, Ekaterinburg, Izd-vo Ural’skogo universiteta, 2009, pp. 170-186.
  22. Avdeev A.V., Metel’nikov A.A. Trudy MAI, 2016, no. 89. URL: http://trudymai.ru/eng/published.php?ID=72840


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход