Development of a database management system for a structural and parametric description of LTCC technology using Qt SQLite

DOI: 10.34759/trd-2021-121-23


Sudarenko D. A.

PJSC Radiofizika, Geroev Panfilovtsev street, 10, Moscow, 125480, Russia



The low temperature co-fired ceramic (LTCC) technology was selected as the technology under study. This technology has found wide application for the manufacture of RF and microwave microcircuits of low and medium degree of integration and can be applied in various industries such as telecommunications, medicine , automotive, military and space technology.

Variable data of LTCC technology (sheet sizes, pastes naming, time, equipment setup, and others) are scattered throughout the documentation. The number of documents and procedures for production, control and management is quite large.

The presented article proposes a method of structural-parametric description of the LTCC technology to improve the quality of the of microwave components production.

Based on this method, a database based on MS Access was developed.

The MS Access database has a number of disadvantages, since it is non-networked and does not allow making multi-user systems.

These problems are being solved by the SQLite DBMS, which will be discussed in detail in this article.

The process of a database creating in the SQLite DBMS for the microwave components production developed on the Qt framework is proposed.

SQLite is a C ++ Qt framework library that implements a small, fast, self-contained, highly reliable, full-featured SQL database engine.

Databases are being partitioned into: 1) server databases, to which one can connect from different devices, and the data itself is stored on a specially dedicated server (MySQL, MS SQL, PostgreSQL); 2) stand-alone databases, to which SQLite belongs.

SQLite implements a standalone (serverless) transactional SQL database engine with no installation, setup, or configuration required. Its code is an open source, and it is free to use for any purpose, commercial or personal. SQLite reads and writes directly to regular files on the disk. Thus, a complete database with multiple tables, indexes, triggers, and views is contained in a single file. The database file format is cross-platform, i.e. one can freely copy the database between 32-bit and 64-bit systems or between direct order and inverted order bites architectures. The Qt framework contains a universal interface for working with various databases. The databases in the Qt view are the drivers for the QtSql module. By default, when installing the framework, the SQLite database is available, for the rest of the databases, one need to install and build drivers for Qt.

Qt provides an extensive database compatibility, with support for both open source and proprietary products. SQL support is integrated with Qt’s «model-view» architecture, simplifying GUI applications integration with databases

The way of data aggregation in general form, as well as the relationship of tables in which the data is stored, and the way of data aggregation into aggregated indicators and portraits are presented.

Assembly and connection of the other database libraries (PostgreSQL / MySQL / ETS) are adduced.

A detailed process of a database creating in the SQLite DBMS for the microwave components production based on the LTCC SQLite Qt is shown.


SQLite technology, low temperature co-fired ceramics (LTCC), structural and parametric description, database, database management systems, framework Qt


  1. Potapov Yu.V. Tekhnologii v elektronnoi promyshlennosti, 2008, no. 3, pp. 59-64. URL:
  2. Tushnov P.A., Nevokshenov A.V., Kazakov A.V., Golubev A.V. Radiotekhnika, 2016, no. 10, pp. 52-63.
  3. Lyapin L.V., Osipov A.V., Dalinger A.G. Elektronnaya tekhnika. Seriya 1: SVCh-tekhnika, 2017, no. 4 (535), pp. 28-43.
  4. Anne Boehm, Ged Mead. Murach’s ADO.NET 4 Database Programming with C# 2010 (Murach: Training & Reference), 4th Edition, 756 p.
  5. Litschke O., Simon W., Holzwarth S. A 30 GHz highly integrated LTCC antenna element for digital beam forming arrays, Conference proceedings APS 2006. Washington, 2006. DOI:10.1109/APS.2005.1552498
  6. Simin A., Kholodnyak D. Komponenty i tekhnologii, 2005, no. 7 (51), pp. 208-213.
  7. Chigirinskii S.A. Komponenty i tekhnologii, 2009, no. 11, pp. 130-131.
  8. Sudarenko D.A., Lyutov A.V. Radiotekhnika, 2016, no. 4, pp. 45-48.
  9. Thick film paste via fill composition for use in LTCC applications. Patent US 7722732, 2010.
  10. Sudarenko D.A., Lyutov A.V. Radiotekhnika, 2017, no. 4, pp. 54-59.
  11. Sudarenko D.A., Lyutov A.V. Radiotekhnika, 2019, vol. 83, no. 10 (15), pp. 58-64. DOI: 10.18127/j00338486-201910(15)-10
  12. Kondratyuk R.I. Informatsionnyi byulleten’ «Stepen’ integratsii», 2011, no. 5, pp. 14-18.
  13. Uhlig P., Holzwarth S., Litschke O., Simon W., Baggen R. A Digital Beam-Forming Antenna Module for a Mobile Multimedia Ter minal in LTCC Multilayer Technique, EMPS 2005, 12 — 15 June 2005, Belgium, Brugge, pp. 467-470.
  14. Uhlig P., Manteuffel D., Malkmus S. High Layer Count in LTCC Dual Band Antenna for Galileo GNSS/CICMT, Journal of Microelectronics and Electronic Packaging, 2008, no. 5 (4), pp. 156–160. DOI:10.4071/1551-4897-5.4.156
  15. Zakirova E.A. Issledovanie pechatnykh plat c mnogosloinymi dielektricheskimi podlozhkami i razrabotka mikropoloskovykh SVCh ustroistv na ikh osnove (Research of printed circuit boards with multilayer dielectric substrates and development of microstrip microwave devices based on them), author’s abstract, Moscow, Vysshaya shkola ekonomiki, 2014, 24 p.
  16. Sudarenko D.A. Issledovano v Rossii, 2002, no. 124, pp. 1381-1384. URL:
  17. Sudarenko D.A. Issledovano v Rossii, 2003, no. 201, pp. 2379–2381. URL:
  18. Adzhibekov A.A., Zhukov A.A., Alekseev O.A. Trudy MAI, 2016, no. 87. URL:
  19. Dudakov N.S., Makarov K.V., Timoshenko A.V. Trudy MAI, 2016, no. 90. URL:
  20. Kuznetsov A.S., Kuznetsov S.N., Postnikova V.N. Trudy MAI, 2015, no. 83. URL:

Download — informational site MAI

Copyright © 2000-2024 by MAI