Сhoosing the architecture of the automatic control system of a convertible unmanned aerial vehicle – a tiltrotor


DOI: 10.34759/trd-2021-121-25

Аuthors

Apollonov D. V., Bibikova K. I.*, Shibaev M. V., Gavrilova A. V.*

Central Aerohydrodynamic Institute named after N.E. Zhukovsky (TsAGI), 1, Zhukovsky str., Zhukovsky, Moscow Region, 140180, Russia

*e-mail: ccfstd@tsagi.ru

Abstract

Unmanned Aerial Vehicles (UAVs) has been the research subject of several recent applications. This paper describes the flight dynamics simulation and automatic control system architecture development of the tilt-rotor UAV. This tape of vehicle combines the high-speed cruise flight capabilities of a conventional airplane with the hovering capabilities of a helicopter by tilting their four rotors. The paper presents a mathematical model of convertible unmanned aerial vehicle (tiltrotor) and the architecture of a unified automatic control system for all flight modes of the tiltrotor. The authors propose a control system structure that uses a limited set of »top-level» control parameters, including the total engines thrust and three moments acting on the UAV. The principle of forming the total thrust and moments by means of redundant set of »lower level» effectors, including engines orientation angles and each engine thrust, as well as aerodynamic control surfaces deflection, is determined. The possibility of using the proposed control principle is confirmed by the results of flight dynamics simulation of UAV executing a typical application scenario including vertical take-off and landing modes, flight along a given route and transient acceleration and deceleration modes. The paper considers the issues of assessing the safety of UAV flight in the event of possible individual control failures, taking into account the existing redundancy. A criterion for assessing controllability in the form of the maximum guaranteed angular acceleration is proposed which allows comparing the consequences of failures of each control effector. The paper shows that in order to guarantee UAV controllability we need to impose requirements on the choice of controller operational algorithms, both in the UAV angular motion control loop and in trajectory motion control loop.

Keywords:

mathematical model, tiltrotor, unmanned aerial vehicle, automatic control system, failure

References

  1. Bazhenov S.G. Osnovy dinamiki poleta (Fundametals of flight dynamic), Moscow, Fizmatlit, 2021, 432 p.
  2. Byushgens A.G., Voronin A.Yu., Kuvshinov V.M., Leont’ev V.A. Uchenye zapiski TsAGI, 2018, vol. 49, no. 2, pp. 39-61.
  3. Kornilov V.A., Molodyakov D.S., Sinyavskaya Yu.A. Trudy MAI, 2012, no. 62. URL: http://trudymai.ru/eng/published.php?ID=35543
  4. Vinogradov S.S. Trudy MAI, 2012, no. 73. URL: http://trudymai.ru/eng/published.php?ID=48562
  5. Gus’kov Yu.P., Zagainov G.I. Upravlenie poletom samoletov (Aircraft flight control). Moscow, Mashinostroenie, 1991, 272 p.
  6. Efremov A.V., Zakharchenko V.F., Ovcharenko V.N. et al. Dinamika poleta (Flight dynamics), Moscow, Mashinostroenie-Polet, 2017, 775 p.
  7. Zhumataeva Zh.E. Trudy MAI, 2012, no. 53. URL: http://trudymai.ru/eng/published.php?ID=29614
  8. Kanatnikov A.N. Izbrannye lektsii po algebre (Lectures on Algebra), Moscow, Izd-vo MGTU im. N.E. Baumana, 2002, 336 p.
  9. Kozhevnikov V.A. Avtomaticheskaya stabilizatsiya vertoletov (Automatic stabilization of helicopters), Moscow, Mashinostroenie, 1977, 152 p.
  10. Komkov V.A., Gudzev V.A., Kursakov A.V., Kharitonov S.V. Trudy MAI, 2015, no. 81. URL: http://trudymai.ru/eng/published.php?ID=57706
  11. Krut’ko P.D. Obratnye zadachi dinamiki v teorii avtomaticheskogo upravleniya (Inverse problems of dynamics in the theory of automatic control), Moscow, Mashinostroenie, 2004, 576 p.
  12. Tishchenko M.N., Artamonov B.L. Trudy MAI, 2012, no. 55. URL: http://trudymai.ru/eng/published.php?ID=30012
  13. Dong Il Park et al. Analysis of The Weighting Matrix for Load Distribution Using Weighted Pseudoinverse in a Redundantly Actuated System, ASME 7th Biennial Conference on Engineering Systems Design and Analysis, 2004, DOI:10.1115/ESDA2004-58404
  14. Gareth D. Padfield. Helicopter Flight Dynamics Including a Treatment of Tiltrotor Aircraft, Wiley, 2018, 856 p.
  15. Jingxian Liao. Mathematical modelling and model predictive controller design of a quad tiltrotor UAV, 2020. DOI:10.1177/0954406220971330
  16. Ke Lu et al. Flight Dynamics Modeling and Dynamic Stability Analysis of Tilt-Rotor Aircraft, International Journal of Aerospace Engineering, 2019, no. 2, pp. 1-15. DOI:10.1155/2019/5737212
  17. Koji Muraoka et al. Transition Flight of Quad Tilt Wing VTOL UAV, 2012.
  18. Kristi Marie Kleinhesselink. Stability and Control Modeling of Tiltrotor Aircraft, 2007.
  19. Luis Rodolfo García Carrillo et al. Quad Rotorcraft Control. Vision-Based Hovering and Navigation, 2013.
  20. Mark E. Dreier. Introduction to Helicopter and Tiltrotor Simulation, American Institute of Aeronautics and Astronautics, 2007, 637 p.
  21. Masayuki Sato. Flight Controller Design and Demonstration of Quad-Tilt-Wing Unmanned Aerial Vehicle, Journal of Guidance, Control, and Dynamics, 2014, no. 38(6), pp. 1-12. DOI:10.2514/1.G000263
  22. Mogens Blanke, Jan Lunze, Marcel Staroswiecki. Diagnosis and Fault-Tolerant Control, 2016. DOI:10.1007/978-3-662-47943-8
  23. Olena Matiychyk et al. Integration Of Tiltrotor Aircraft Into Modern Air Transport Systems, Conference: «Science — Future of Lithuania. Transport Engineering and Management», 2017. URL: http://jmk.transportas.vgtu.lt/index.php/tran2017/tran2017/paper/view/106
  24. Praneet Vayalali et al. Redistributed Pseudoinverse Control Allocation for Actuator Failure on a Compound Helicopter, Conference: The Vertical Flight Society’s 76th Annual Forum & Technology Display, 2020.
  25. Raza S.J. Use of the Pseudo- Inverse for Design of a Reconfigurable Flight Control System, 1985. DOI:10.2514/6.1985-1900
  26. Takahito Mikami et al. Design of Flight Control System for Quad Tilt-Wing UAV, 2015. DOI:10.1109/ICUAS.2015.7152364
  27. Thomas Lombaerts et al. Nonlinear Dynamic Inversion based Attitude Control for a Hovering Quad Tiltrotor eVTOL Vehicle, AIAA Scitech 2019 Forum, 2019. DOI:10.2514/6.2019-0134
  28. Zaibin Chen et al. Design of Flight Control System for a Novel Tilt-Rotor UAV, Complexity, 2020, no. (1-4), pp. 1-14. DOI:10.1155/2020/4757381
  29. Zhiwei Kong et al. Mathematical Modeling and Modal Switching Control of a Novel Tiltrotor UAV, Journal of Robotics, 2018, no. 3, pp. 1-12. DOI:10.1155/2018/8641731


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход