Method of structural and parametric configuration of the motion and navigation control system of a small space vehicle for remote earth sensing under different scenarios of destructive impacts


DOI: 10.34759/trd-2022-122-15

Аuthors

Vorotyagin V. N.

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

e-mail: vka@mil.ru

Abstract

Today, methods and technologies employing Earth remote probing data being developed by Roscosmos enterprises allow suggesting unique ways for ensuring safety, increasing efficiency of exploration and extraction of natural resources, introducing the latest practices into agriculture, preventing and eliminating consequences of emergencies, as well as protecting environment and controlling climate change. The issue of new space technology developing (a small spacecraft for the Earth remote probing in particular) is becoming most relevant.

To increase the degree of the design decisions validity while creating a small spacecraft, the article considers:

- Conceptually new approach to the development of a scientific-and-methodological apparatus for multi-criteria selection of the onboard control system structure and parameter on the example of a small spacecraft motion and navigation control system;

- Optimization of its limited resources to ensure proactive compensation of destructive external agency impacts

The article presents the developed structural-and-logical scheme for motion and navigation control system configuring of the Earth remote probing small spacecraft. The proposed approach allows putting into practice a multi-criteria selection of effective configuration options for motion and navigation control system of a small spacecraft with account for various types of structural redundancy of the onboard equipment, and a wide range of element base. The conceptual and mathematical statements of the problem are given, and an algorithm for multi-criteria synthesis of the motion and navigation control system appearance of a small spacecraft is developed.

The proposed technique will allow, even at the spacecraft design stage, significantly reducing the number of design errors by the decision-maker, as well as improving the quality and efficiency of the created space systems application.

Keywords:

motion and navigation control system, structural-parametric configuration, rational options

References

  1. Istoriya razvitiya sistem upravleniya, radiotekhnicheskikh sistem i nazemnogo avtomatizirovannogo kompleksa upravleniya otechestvennoi raketno-kosmicheskoi tekhniki (The history of the development of control systems, radio engineering systems and ground-based automated control complex of domestic rocket and space technology), Moscow, Izdatel'skii dom «Stolichnaya entsiklopediya», 2019, vol. 6, 600 p.

  2. Semkin N.D., Telegin A.M., Kalaev M.P. Kosmicheskoe prostranstvo i ego vliyanie na elementy konstruktsii kosmicheskikh apparatov (Outer space and its influence on the structural elements of spacecraft), Samara, SGAU, 2013, 46 p.

  3. Borodin V.V. Trudy MAI, 2012, no. 58. URL: http://trudymai.ru/eng/published.php?ID=33036

  4. Bykov A.P., Piganov M.N. Trudy MAI, 2021, no. 116. URL: http://trudymai.ru/eng/published.php?ID=121012. DOI: 10.34759/trd-2021-116-05

  5. Ushakov I.A Kurs Teorii nadezhnosti system (The course of the Theory of reliability of systems), Moscow, Drofa, 2008, 239 p.

  6. Vasil'kov Yu.V., Timoshenko A.V., Sovetov V.A., Kirmel' A.S. Trudy MAI, 2019, no. 108. URL: http://trudymai.ru/eng/published.php?ID=109557. DOI: 10.34759/trd-2019-108-16

  7. Okhtilev M.Yu., Mustafin N.G., Miller V.E., Sokolov B.V. Izvestiya vuzov. Priborostroenie, 2014, vol. 57, no. 11, pp. 7–14.

  8. Pavlov A.N., Sokolov B.V., Osipenko S.A. et al. Sistemnyi analiz organizatsionno-tekhnicheskikh sistem kosmicheskogo naznacheniya (System analysis of organizational and technical systems for space purposes), Saint Petersburg, VKA imeni A.F.Mozhaiskogo, 2018, 357 p.

  9. Kirilin A.N., Akhmetov R.N., Shakhmatov E.V. et al. Opytno-tekhnologicheskii malyi kosmicheskii apparat «AIST-2D» (Technological small spacecraft "AIST-2D"), Samara, Izd-vo SamNTs RAN, 2017, 324 p.

  10. Mikoni S.V. Teoriya prinyatiya upravlencheskikh reshenii (Theory of managerial decision-making), Saint Petersburg, Lan', 2015, 448 p.

  11. Petrovskii A.B., Roizenzon G.V., Tikhonov I.P., Balyshev A.V. Retrospektivnyi analiz rezul'tativnosti nauchnykh proektov, International Journal Information Models and Analyses, 2012, vol. 1, no. 4, pp. 349-356.

  12. Podinovski V.V. Decision making under uncertainty with unknown utility function and rank-ordered probabilities, European Journal of Operational Research, 2014, vol. 239, no. 2, pp. 537–541. DOI:10.1016/j.ejor.2014.05.023

  13. Larichev O.I. Verbal'nyi analiz reshenii (Verbal analysis of solutions), Moscow, Nauka, 2006, 181 p.

  14. Nogin V.D. Prinyatie reshenii v mnogokriterial'noi srede: kolichestvennyi podkhod (Decision-making in a multicriteria environment: a quantitative approach), Moscow, FIZMATLIT, 2005, 176 p.

  15. Pavlov A.N., Vorotyagin V.N., Pavlov D.A., Kulakov A.Yu. Mezhdunarodnaya konferentsiya «Modelirovanie i analiz bezopasnosti i riska v slozhnykh sistemakh»: sbornik trudov, Saint Petersburg, GUAP, 2020, pp. 115-121.

  16. Pavlov A.N., Vorotyagin V.N., Gordeev A.V. Desyataya Vserossiiskaya nauchno-prakticheskaya konferentsiya po imitatsionnomu modelirovaniyu i ego primeneniyu v nauke i promyshlennosti «Imitatsionnoe modelirovanie. Teoriya i praktika» (IMMOD-2021): sbornik trudov, Saint Petersburg, AO «TsTSS», 2021, pp. 594-600.

  17. Sokolov B.V., Moskvin B.V., Pavlov A.N. et al. Voennaya sistemotekhnika i sistemnyi analiz. Modeli i metody prinyatiya reshenii v slozhnykh organizatsionno-tekhnicheskikh kompleksakh v usloviyakh neopredelennosti i mnogokriterial'nosti (Military system engineering and system analysis. Models and methods of decision-making in complex organizational and technical complexes in conditions of uncertainty and multicriteria), Saint Petersburg, VIKKU imeni A. F. Mozhaiskogo, 1999, 496 p.

  18. Polenin V.I., Ryabinin I.A., Svirin S.K., Gladkova I.A. Primenenie obshchego logiko-veroyatnostnogo metoda dlya analiza tekhnicheskikh, voennykh organizatsionno-funktsional'nykh sistem i vooruzhennogo protivoborstva: monografiya (Application of the general logical-probabilistic method for the analysis of technical, military organizational and functional systems and armed confrontation), Saint Petersburg, NIKA, 2011, 416 p.

  19. Pavlov A.N. Sokolov B.V. Informatizatsiya i svyaz', 2019, no. 3, pp. 57-62. DOI: 10.34219/2078-8320-2019-10-3-57-62

  20. Vorotyagin V.N. Goncharov A.M., Pavlov A.N. Trudy Voenno-kosmicheskoi akademii imeni A.F. Mozhaiskogo, 2020, no. 673, pp. 7-17.

  21. Pavlov A.N. Vorotyagin V.N., Pavlov D.A. Kosmicheskaya tekhnika i tekhnologii, 2020, no. 3 (30), pp. 103-113. DOI: 10.33950/spacetech-2308-7625-2020-3-103-113

  22. Pavlov A.N. Kulakov A.Yu., Vorotyagin V.N., Umarov A.B. Informatizatsiya i svyaz', 2020, no. 4, pp. 156-164.

  23. Pavlov A.N., Pavlov D.A., Vorotyagin V.N., Ymarov A.B. Structural and Functional Analysis of Supply Chain Reliability in the Presence of Demand Fluctuations, Models and Methods for Researching Information Systems in Transport Workshop 2020 (MMISR 2020), 2020, vol. 2803, pp. 61-66.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход