Investigation of the influence of cutting tool flank face contact forces on the dynamics of end milling


DOI: 10.34759/trd-2022-123-11

Аuthors

Zhukov N. A.*, Kiselev I. A.**

Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: jukov.n@yandex.ru
**e-mail: i.a.kiselev@yandex.ru

Abstract

In the modern machinery 5 axis end milling operations are widely used in the production of thin-walled workpieces with complex 3D surface geometry [1-3]. Such processes are always accompanied by vibrations of different elements of the technological system (e.g., workpiece, tool): free, forced, parametric vibrations may arise, as well as self-oscillations. One of the most undesirable vibration types are regenerative self-oscillations, which may cause dynamic instability of the steady-state cutting process: these vibrations arise due to the fact, that each tooth of the mill is cutting the surface, formed by a previous tooth, so the time delay effect is introduced [4-6]. At the early investigations of cutting dynamics it was observed, that vibrations amplitudes of the technological system’s elements decreased while machining with low spindle speeds [7,8]. This effect was called “process damping” and its presence was explained by contact interaction between the flank face of the tool and the machined surface [9]. The intensity of process damping is the higher, the lower is the ration of the mill’s teeth pass frequency to the vibrations frequency [10].

Modern time-domain models of 5 axis end milling processes lack process damping accountment [17-19], so numerically simulated machining dynamics at low spindle speeds (comparatively to the arising vibrations frequencies) are not correct, which is extremely actual for machining of thin-walled workpieces from nickel and titan alloys. In this work a new time-domain numerical model of end milling dynamics of flexible workpieces is presented. This model allows to consider complex 3D contact forces between the workpiece and both rake and flank faces of the cutting tool during end milling dynamics simulation. Model’s structure and its main blocks are described. The developed model was used to perform numerical experiment on the influence of contact forces, arising on the flank face of the cutting tool, on the dynamics of the flexible workpiece end milling. Obtained numerical results qualitatively match well known experimental data from literature.

Keywords:

end milling, cutting dynamics, process damping, flank face, numerical modeling

References

  1. Korotygin A.A., Bagrov S.V., Pyatunin K.R. Trudy MAI, 2011, no. 45. URL: http://trudymai.ru/eng/published.php?ID=25419
  2. Glushkov T.D., Mitrofovich V.V. Trudy MAI, 2018, no. 101. URL: http://trudymai.ru/eng/published.php?ID=96592

  3. Bolkhovitin M.S., Ionov A.V. Trudy MAI, 2013, no. 71. URL: http://trudymai.ru/eng/published.php?ID=46719

  4. Altintas Y. Manufacturing automation. New York (USA), Cambridge University Press, 2012, 366 p.

  5. Tlusty J., Polacek M. The stability of machine tools against self-excited vibrations in machining, Proceedings of the ASME International Research in Production Engineering, Pittsburgh, USA, 1963, pp. 465-474.

  6. Tobias S., Fishwick W. Theory of regenerative machine tool chatter, London (UK), The Engineer, 1958, 258 p.

  7. Tobias S. The chatter of lathe tools under orthogonal cutting conditions // Transactions of ASME, 1958, vol. 80, pp. 1079-1085. DOI:10.1115/1.4012609

  8. Andrew C. Chatter in horizontal milling, Proceedings of the Institution of Mechanical Engineers, 1964, vol. 179, no. 1, pp. 877-906. DOI:10.1243/PIME_PROC_1964_179_054_02

  9. Sisson T.R., Kegg R.L. An explanation of low-speed chatter effects, Journal of ngineering for Industry, 1969, vol. 91, no.4, pp. 951-958. DOI: 10.1115/1.3591778

  10. Altintas Y., Weck M. Chatter stability of metal cutting and grinding, CIRP annals, 2004, vol. 53, no. 2, pp. 619-642. DOI:10.1016/S0007-8506(07)60032-8

  11. Generalov L.K. Trudy MAI, 2011, no. 44. URL: http://trudymai.ru/eng/published.php?ID=24993

  12. Legaev V.P., Generalov L.K. Trudy MAI, 2011, no. 44. URL: http://trudymai.ru/eng/published.php?ID=24995

  13. Ivanov I.I., Larkin A.A., Pleshcheev I.I. Journal of Physics: Conference Series. IOP Publishing, 2020, vol. 1546, no. 1, pp. 012081. DOI:10.1088/1742-6596/1546/1/012081

  14. Gubanov G.A., Deev K.A. Materialy XXVIII nauchno-tekhnicheskoi konferentsii po aerodinamike, Zhukovskii, Izd-vo TsAGI, 2017, pp. 106.

  15. Kuts V.A., Nikolaev S.M., Kiselev I.A. Application of combined technique for chatter prediction in 5-Axis milling, International Conference on Industrial Engineering, Springer, Cham, 2018, pp. 683-691. DOI:10.1007/978-3-319-95630-5_71

  16. Tuysuz O., Altintas Y. Analytical Modeling of Process Damping in Machining, Journal of Manufacturing Science and Engineering, 2019, vol. 141, no. 6. DOI:10.1115/1.4043310

  17. Voronov S.A., Kiselev I.A. Dynamics of flexible detail milling //Proceedings of the Institution of Mechanical Engineers, Part K, Journal of Multi-body Dynamics, 2011, vol. 225, no. 4, pp. 299-309. DOI:10.1177/1464419311418735

  18. Biermann D., Kersting P., Surmann T. A general approach to simulating workpiece vibrations during five-axis milling of turbine blades, CIRP annals, 2010, vol. 59, no. 1, pp. 125-128. DOI:10.1016/j.cirp.2010.03.057

  19. Lorong P. et al. Simulation of a finishing operation: milling of a turbine blade and influence of damping, ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, American Society of Mechanical Engineers Digital Collection, 2012, pp. 89-98. DOI:10.1115/ESDA2012-82534

  20. Voronov S.A., Kiselev I.A. Inzhenernyi zhurnal: nauka i innovatsii, 2012, no. 6 (6).

  21. Wu D.W. A new approach of formulating the transfer function for dynamic cutting processes, Journal of Engineering for Industry, 1989, vol. 111, pp. 37-47. DOI:10.1115/1.3188730


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход