The influence of the reinforcement of carbon thin-walled open cylindrical shells on free vibrations


DOI: 10.34759/trd-2022-123-03

Аuthors

Seregin S. V., Dobryshkin A. Y.*, Sysoev E. O.**, Zhuravleva E. V.***

Komsomolsk-na-Amure State University, 27, Lenina str., Komsomolsk-on-Amur, 681013, Russia

*e-mail: wwwartem21@mail.ru
**e-mail: fks@knastu.ru
***e-mail: diana@knastu.ru

Abstract

Thin-walled cylindrical shells found wide application in various industries. The development of technology puts forward more and more serious requirements for the strength and stability of structures along with their low weight and cost. Such requirements are being applied to aeronautical engineering and unmanned aerial vehicles. The optimal solution in many cases consists in applying thin-walled shells made of carbon materials with high strength properties. The shell structures are being exposed to temperature and wind loads, variable atmospheric pressure during the aircraft flight and many other dynamic impacts. Thus, the structural materials of the shells should be lightweight and durable. Recently, carbon materials, which are an order of magnitude lighter and stronger that metal, are being applied more often. Under operating conditions, shells are being exposed to high dynamic stresses that may lead to adverse effects. However, the problem of the multilayer carbon shells dynamics is not fully understood up to now. Thus, for example, the known theoretical studies in a number of cases, have significant discrepancies in the values of the lowest frequencies of the vibration spectrum of reinforced shells with numerical calculations performed by the finite element method. This fact requires an experimental study on the behavior of low frequencies. The article provides an experimental study of the effect of multilayer reinforcement of thin-walled carbon fiber open cylindrical shells on their free vibrations. Experimental samples were created on the Komsomolsk-on-Amur State University basis for the experimental study of the effect of multilayer reinforcement of carbon thin-walled open cylindrical shells on their free vibrations. Models of shells with single-layer reinforcement were made of 2/2 12K-1000-600carbon fabric. Two-layer reinforcement was created from a layer of 2/2 12K-1000-200carbon fabric and a layer of 2/2 12K-1000-400 fabric. A three-layer reinforcement was created from three layers of 2/2 12K-1000-200carbon fabric. The experimental data was compared with the analytical solution. The experiments revealed an increase in the vibration frequencies of carbon thin-walled open cylindrical shells with an increase in the number of layers of carbon fabric reinforcement in relation to the values of frequencies obtained analytically.

Keywords:

vibrations, shell, experimental research, calculation method

References

  1. Kubenko V.D., Koval’chuk P.S., Krasnopol’skaya T.S. Nelineinoe vzaimodeistvie form izgibnykh kolebanii tsilindricheskikh obolochek (Nonlinear interaction of shapes of cylindrical shells bending vibrations), Kiev, Naukova dumka, 1984, 220 p.

  2. Antuf’ev B.A. Kolebaniya neodnorodnykh tonkostennykh konstruktsii (Oscillations of inhomogeneous thin-walled structures), Moscow, Izd-vo MAI, 2011, 176 p.

  3. Sysoev O.E., Dobryshkin A.Yu., Nein Sit Naing. Trudy MAI, 2018, no. 98. URL: http://trudymai.ru/eng/published.php?ID=90079

  4. Guseva Zh.I. Uchenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2021, no. 4 (52), pp. 99-104.

  5. Z. Wang, Q. Han, D. H. Nash, P. Liu. Investigation on inconsistency of theoretical solution of thermal buckling critical temperature rise for cylindrical shell, Thin-Walled Structures, 2017, no. 119, pp. 438-446. DOI: 10.1016/j.tws.2017.07.002

  6. Sysoev O., Dobryshkin A., Baenkhaev A. Investigation to the location influence of the unified mass on the formed vibrations of a thin containing extended shell, Materials Science Forum, 2019, vol. 945, pp. 885-892. DOI:10.4028/www.scientific.net/MSF.945.885

  7. Sysoev O., Dobryshkin A. Natural vibration of a thin desing with an added mass as the vibrations of a cylindrical shell and curved batten. ISSN 2095-7262 CODEN HKDXH2, Journal of Heilongjiang university of science and technology, 2018, vol. 28, no. 1, pp.75–78.

  8. Y. Qu, Y. Chen, X. Long, H. Hua, and G. Meng. Free and forced vibration analysis of uniform and stepped circular cylindrical shells using a domain decomposition method, Applied Acoustics, 2013, vol. 74, no. 3, pp. 425-439.

  9. Foster N., Fernández-Galiano L. Norman Foster: in the 21st Century, AV, Monografías, Artes Gráficas Palermo, 2013, pp. 163–164.

  10. Eliseev V.V., Moskalets A.A., Oborin E.A. One-dimensional models in turbine blades dynamics, Lecture Notes in Mechanical Engineering, 2016, vol. 9, pp. 93-104. DOI:10.1007/978-3-319-29579-4_10

  11. Belostochnyi G.N., Myl’tsina O.A. Trudy MAI, 2015, no. 82. URL: http://trudymai.ru/eng/published.php?ID=58524

  12. Kuznetsova E.L., Tarlakovskii D.V., Fedotenkov G.V., Medvedskii A.L. Trudy MAI, 2013, no. 71. URL: http://trudymai.ru/eng/published.php?ID=46621

  13. Feoktistov S.I. Uchenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2021, no. 1 (49), pp. 76-82. DOI: 10.17084/20764359_2021_49_76

  14. Kanashin I.V., Grigor’eva A.L., Khromov A.I., Grigor’ev Yan.Yu., Mashevskii V.A. Uchenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2021, no. 3 (51), pp. 39-41. DOI: 10.17084/20764359-2021-51-39

  15. Demin A.A., Golubeva T.N., Demina A.S. The program complex for research of fluctuations’ ranges of plates and shells in magnetic field, 11th Students’ Science Conference «Future Information technology solutions», Bedlewo, 3-6 October 2013, pp. 61-66.

  16. Nushtaev D.V., Zhavoronok S.I., Klyshnikov K.Yu., Ovcharenko E.A. Trudy MAI, 2015, no. 82. URL: http://trudymai.ru/eng/published.php?ID=58589

  17. Grushenkova E.D., Mogilevich L.I., Popov V.S., Popova A.A. Trudy MAI, 2019, no. 106. URL: http://trudymai.ru/eng/published.php?ID=105618

  18. Hautsch N., Okhrin O., Ristig A. Efficient iterative maximum likelihood estimation of highparameterized time series models, Berlin, Humboldt University, 2014, 34 p.

  19. Sablin P.A., Shchetinin V.S. Uchenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2021, no. 3 (51), pp. 104-106. DOI: 10.17084/20764359-2021-51-104

  20. Andrianov I.K. Uchenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2021, no 3 (51), pp. 14-20. DOI: 10.17084/20764359-2021-51-14

  21. Ivankova E.P. Uchenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2021, no. 3 (51), pp. 85-89. DOI: 10.17084/20764359-2021-51-85

  22. Evstigneev A.I., Dmitriev E.A., Odinokov V.I., Ivankova E.P., Usanov G.I., Petrov V.V. Uchenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2020, no. 7 (47), pp. 104-107.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход