An analytical form for presenting a filler for three-layer systems, consisting of staggered cone-shaped elements


DOI: 10.34759/trd-2022-123-04

Аuthors

Zotov A. A.

e-mail: aa-zotov@inbox.ru

Abstract

This paper considers the problem of analytical determination for the stiffness characteristics due to the use of a filler in the form of a regular cone-shaped (or pyramidal) cell’s system arranged in a checkerboard pattern for three-layer plates

At the moment, the most widespread are honeycomb, corrugated or folded fillers. The main filler’s advantages are low weight and high rigidity. However, there are circumstances that prevent their wider use. The closed volume formed by the core’s cells e promotes the accumulation of condensate, at the same time preventing its removal. On the other hand, there are technological difficulties associated with the provision and control of a reliable connection between a filler and bearing layers (especially on curved surfaces), thereby increasing the product cost. The structure of the cellular filler considered in the article largely allows to solve the above problems.

Due to the complexity and laboriousness of solving strength and stability problems for systems of variable stiffness, analytical solutions for a wide class of such structures are practically absent or hardly applicable in solving problems related to the design of products.

The article proposes a method for analytical filler’s representation in the form of a regular discrete cone-shaped cell’s system, with the aim of further determining the geometric properties.

Based on the analysis of the filler’s shape under study, contemplation its shape as a surface described by the trigonometric Fourier series was proposed. However, upon further analysis of the problem, it was possible to reduce the function describing the filler’s geometry to a simpler form. The final version of the shape function was a set of coefficient, cosine and sine. Filler’s representation in the form of a similar function allows one to determine the variable bending stiffness of a three-layer package when solving the problems of bending of plates with variable stiffness.

Representation of the shape of the considered filler in this form with high accuracy conveys the true geometry of the product and allows to analytically describe the geometric stiffness characteristics of the structure (areas, moments of inertia and static section moments) included in the differential equations of bending and buckling of a variable stiffness plate.

Keywords:

rectangular three-layer plate, analytical methods, stress-strain state, strength, buckling

References

  1. Bolotin V.V., Novichkov Yu.N. Mekhanika mnogosloinykh konstruktsii (Mechanics of multilayer structures), Moscow, Mashinostroenie, 1980, 375 p.

  2. Aleksandrov A.Ya. Raschet elementov aviatsionnykh konstruktsii. Trekhsloinye plastiny i obolochki (Elements calculation of aircraft structures. Three-layer plates and shells), Moscow, Mashinostroenie, 1985, 203 p.

  3. Erkov A.P., Dudchenko A.A. Trudy MAI, 2018, no. 103. URL: http://trudymai.ru/eng/published.php?ID=100622

  4. Filatov V.V. Academia. Arkhitektura i stroitel’stvo, 2009, no. 4, pp. 79-81.

  5. Endogur A.I., Vainberg M.B., Ierusalimskii K.M. Sotovye konstruktsii (Honeycomb structures), Moscow, Mashinostroenie, 1986, 200 p.

  6. Zotov A.A., Kolpakov A.M., Volkov A.N. Trudy MAI, 2018, no. 103. URL: http://trudymai.ru/eng/published.php?ID=100595

  7. Starovoitov E.I., Lokteva N.A., Starovoitova E.E. Trudy MAI, 2014, no. 77. URL: http://trudymai.ru/eng/published.php?ID=53018

  8. Dudchenko A.A., Basharov E.A. Trudy MAI, 2011, no. 42. URL: http://trudymai.ru/eng/published.php?ID=24261

  9. Nerubailo B.V., Vu B.Z., Zaitsev V.M. Trudy MAI, 2013, no. 67. URL: http://trudymai.ru/eng/published.php?ID=41554

  10. J. BŁachut. On elastic—plastic buckling of cones, Thin-Walled Structures, 2011, vol. 49, no. 1, pp. 45-52. DOI:10.1016/j.tws.2010.08.005

  11. Regina Khakimovaa, Rolf Zimmermann, Dirk Wilckens, Klaus Rohwer, Richard Degenhard. Buckling of axially compressed CFRP truncated cones with additional lateral load: Experimental and numerical investigation, Composite Structures, 2016, vol. 146, pp 436-447. DOI:10.1016/j.compstruct.2016.02.023

  12. Zotov A.A., Volkov A.N., Boikov A.A. Vestnik mashinostroeniya, 2020, no. 8, pp. 41-44. DOI: 10.36652/0042-4633-2020-8-41-44

  13. Zakharov A.G., Anoshkin A.N., Kop’ev V.F. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Aerokosmicheskaya tekhnika, 2017, no. 51, pp. 95-103. DOI: 10.15593/2224-9982/2017.51.09

  14. Khaliulin V.I. Tekhnologiya izgotovleniya skladchatykh zvukopogloshchayushchikh konstruktsii iz polimernykh kompozitov: tematicheskii sbornik (Manufacturing technology of folded sound-absorbing structures from polymer composites: subject collection), Moscow, MGATU im. Tsialkovskogo, 1996, pp. 31- 34.

  15. Basic Dynamic Analysis User’s Guide, Siemens, 2017, 404 p. URL: https://pdf4pro.com/view/basic-dynamic-analysis-user-s-guide-siemens-100a39.html

  16. Skvortsov Yu.V. Analiz prochnosti elementov aviatsionnykh konstruktsii s pomoshch’yu CAE-sistemy MSC. Patran-Nastran (Strength analysis of aircraft structures using the MSC CAE System. Patran-Nastran), Samara, Samarskii gosudarstvennyi aerokosmicheskii universitet, 2012, 425 p.

  17. Birger I.A., Panovko Ya.G. Prochnost’, ustoichivost’, kolebaniya: Spravochnik (Strength, buckling, oscillations: Handbook), Moscow, Mashinostroenie, 1968, vol. 3, 415 p.

  18. Gol’denveizer A.L., Lidskii V.B., Tovstik P.E. Svobodnye kolebaniya tonkikh uprugikh obolochek (Free oscillations of thin elastic shells), Moscow, Nauka, 1979, 384 p.

  19. Karmishin A.V., Lyaskovets V.A., Myachenkov V.I., Frolov A.N. Statika i dinamika tonkostennykh obolochechnykh konstruktsii (Statics and dynamics of thin-walled shell structures), Mashinostroenie, 1975, 375 p.

  20. Varvak P.M., Ryabov A.F. Spravochnik po teorii uprugosti (Handbook of Elasticity Theory), Kiev, Budivel’nik, 1971, 418 р.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход