Adaptive interpolation algorithm for solving problems of celestial mechanics with interval uncertainties


DOI: 10.34759/trd-2022-123-24

Аuthors

Morozov A. Y.

Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, 44-2, Vavilova str., Moscow, 119333, Russia

e-mail: morozov@infway.ru

Abstract

The presented work performs the application of the previously developed adaptive interpolation algorithm to the problem of XF11 asteroid motion simulation with regard for the interval uncertainties in the asteroid position and velocity. The XF11asteroid motion around the Sun is being considered without accounting for the effect of the other planets. The original problem is formulated as a Cauchy problem for a system of ordinary differential equations (ODE) with interval initial conditions.

The essence of the adaptive interpolation algorithm consists in plotting for each time point piecewise polynomial function that interpolates the dependence of the solution to the problem on the point values of the interval parameters. An adaptive grid is being created over the region of the parameter uncertainty. Each node of the grid corresponds to the original problem solution with the parameters values determined by the node position in space. The grid adaptation is being performed depending on the interpolation error. In the places where the error is large, new nodes are being added, and in the places where the error is small, the grid is being rarefied.

The article presents the description of various existing methods and corresponding software libraries, such as AWA, COZY-VI, RiOT, verifyode, for solving this class of problems. Employing the adaptive interpolation algorithm, the obtained interval system of ODEs is numerically integrated and compared with known results from the standpoint of the interval estimates accuracy and computational costs. Application of the fundamentally different approach to solving interval problems, allowed the adaptive interpolation algorithm obtaining solution boundaries with controlled accuracy. The algorithm is not subjected to the wrapping effect, and runs orders of magnitude faster than its analogs.

Keywords:

asteroid, interval system of ordinary differential equations, adaptive interpolation algorithm, software libraries

References

  1. Kulish S.M., Morozov A.Yu., Tykotskii V.V. Materialy XXIII Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Preduprezhdenie. Spasenie. Pomoshch'»: tezisy dokladov. Khimki, Akademiya grazhdanskoi zashchity MChS Rossii, 2013, pp. 211-212.

  2. Moore R.E., Kearfott R.B., Cloud M.J. Introduction to Interval Analysis, SIAM, 2009, 223 p.

  3. Dobronets B.S. Interval'naya matematika (Interval mathematics), Krasnoyarsk, Krasnoyarskii gosudarstvennyi universitet, 2007, 218 p.

  4. Sharyi S.P. Konechnomernyi interval'nyi analiz (Finite-dimensional interval analysis), Novosibirsk, Izd-vo XYZ, 2017, 618 p.

  5. Morozov A.Yu., Reviznikov D.L. Trudy MAI, 2016, no. 89. URL: http://trudymai.ru/eng/published.php?ID=73407

  6. Moore R.E. Interval Analysis. Englewood Cliffs, Prentice Hall, 1966, 159 p.

  7. Eijgenraam P. The Solution of Initial Value Problems Using Interval Arithmetic: Formulation and Analysis of an Algorithm, Amsterdam, Mathematisch Centrum, 1981, 185 p.

  8. Lohner R.J. Enclosing the solutions of ordinary initial and boundary value problems, Computer Arithmetic: Scientific Computation and Programming Languages, 1987, pp. 255–286.

  9. Lohner R.J. Einschließung der Losung gewohnlicher Anfangs– und Randwertaufgaben und Anwendungen. PhD thesis, Universitat Karlsruhe, 1988.

  10. Nedialkov N.S., Jackson K.R., Pryce J.D. An effective high-order interval method for validating existence and uniqueness of the solution of an IVP for an ODE, Reliable Computing, 2001, vol. 7, no. 6, pp. 449–465. DOI:10.1023/A:1014798618404

  11. Stauning O. Automatic Validation of Numerical Solutions. PhD thesis, Technical University of Denmark, 1997.

  12. Chernous'ko F.L. Otsenivanie fazovykh sostoyanii dinamicheskikh sistem. Metod ellipsoidov (Estimation of phase states of dynamical systems. Ellipsoid method), Moscow, Nauka, 1988, 319 p.

  13. Kurzhanski A.V., Vdlyi I. Ellipsoidal Calculus for Estimation and Control. SCFA. Boston, 1997, 321

  14. Berz M., Makino K. Verified integration of ODEs and flows with differential algebraic methods on Taylor models, Reliable Computing, 1998, vol. 4, no. 4, pp. 361–369.

  15. Rogalev A.N. Vychislitel'nye tekhnologii, 2003, vol. 8, no. 5, pp. 102–116.

  16. Berz M. COSY INFINITY version 8 reference manual. Technical Report MSUCL–1088, National Superconducting Cyclotron Lab., Michigan State Universitz, 1997.

  17. Eble I. Über Taylor-Modelle, Dissertation zur erlangung des akademischen grades eines doktors der naturwissenschaften, Karlsruhe Institute of Technology, 2007.

  18. Rump S.M. INTLAB — INTerval LABoratory. In Tibor Csendes, editor, Developments in Reliable Computing, Kluwer Academic Publishers, Dordrecht, 1999, pp. 77–104.

  19. Ermakov S.M., Mikhailov G.A. Statisticheskoe modelirovanie (Statistical modeling), Moscow, Nauka, 1982, 296 p.

  20. Fu C., Ren X., Yang Y.-F., Lu K., Qin W. Steady-state response analysis of cracked rotors with uncertain but bounded parameters using a polynomial surrogate method, Communications in Nonlinear Science and Numerical Simulation, 2019, no. 68, pp. 240–256. DOI: 10.1016/j.cnsns.2018.08.004

  21. Fu C., Xu Y., Yang Y., Lu K., Gu F., Ball A. Response analysis of an accelerating unbalanced rotating system with both random and interval variables, Journal of Sound and Vibration, 2020, no. 466, pp. 115047. DOI: 10.1016/j.jsv.2019.115047

  22. Morozov A.Yu., Reviznikov D.L. Differentsial'nye uravneniya, 2018, vol. 54, no. 7, pp. 963–974. DOI: 10.1134/S0374064118070130

  23. Bünger F. Shrink wrapping for Taylor models revisited, Numerical Algorithms, 2018, no. 4, pp. 1–18. DOI: 10.1007/s11075-017-0410-1

  24. Panteleev A.V., Karane M.M.S. Trudy MAI, 2021, no. 117, URL: http://trudymai.ru/eng/published.php?ID=156249. DOI: 10.34759/trd-2021-117-10

  25. Morozov A.Yu., Zhuravlev A.A., Reviznikov D.L. Differentsial'nye uravneniya, 2020, vol. 56, no. 7, pp. 960–974. DOI: 10.1134/S0374064120070122

  26. Morozov A.Yu., Reviznikov D.L., Gidaspov V.Yu. Matematicheskoe modelirovanie, 2018, vol. 30, no. 12, pp. 129–144. DOI: 10.31857/S023408790001940-8

  27. Gidaspov V.Yu., Moskalenko O.A. Trudy MAI, 2016, no. 90. URL: http://trudymai.ru/eng/published.php?ID=74647

  28. Gidaspov V.Yu., Kononov D.S. Trudy MAI, 2019, no. 109. URL: http://trudymai.ru/eng/published.php?ID=111353. DOI: 10.34759/trd-2019-109-6

  29. Kryukov V.G., Abdullin A.L., Nikandrova M.V., Iskhakova R.L. Trudy MAI, 2019, no. 105. URL: http://trudymai.ru/eng/published.php?ID=104166

  30. Morozov A.Yu., Reviznikov D.L. Modelling of Dynamic Systems with Interval Parameters on Graphic Processors, Software Engineering, 2019, vol. 10, no. 2, pp. 69–76. DOI: 10.17587/prin.10.69-76

  31. Hoefkens J., Berz M., Makino K. Controlling the Wrapping Effect in the Solution of ODEs for Asteroids, Reliable Computing, 2003, vol. 8, no. 1, pp. 21–41.


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход