Assessment of stability of the root link of the manipulator under the action of axial load on it
DOI: 10.34759/trd-2022-124-01
Аuthors
*, *, *, *Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia
*e-mail: vka@mil.ru
Abstract
The development of space manipulation systems is directly related with obvious expansion of the possible range of work and operations that can be carried out in difficult and dangerous conditions with technical orbital objects and equipment installed on them. By now, the main construction option used has developed — a hinge-type manipulation system of different degrees of complexity.
Modern manipulators must be carried out with condition of maintaining stability of elements. Taking into account the priority of influence of the root link on stability of the manipulator as a whole, it is proposed to investigate the equilibrium positions of the rod for stability at a range of deviations π < φ < π. Criterion of stability of equilibrium position for systems with holonomic and stationary constraints located in conservative force field is determined by Lagrange-Dirichlet theorem: According to the theorem equilibrium positions of a conservative system in which its potential energy has minimum are stable. The results of the study of stability by taking into account angle of inclination of the link are determined by the dependence between the angle of inclination φ and the dimensionless force λ. The formation of the real appearance of a service multi-link manipulator for use in space conditions should be carried out on the basis of taking into account functional tasks and the available database on specifics of creation and use of existing devices. The studies carried out to date indicate that, along with geometric interpretation, which provides an assessment of the initial structure and approximate dimensions of the manipulator elements, it is necessary to analyze the operational loads that determine stability of circuit elements. Obviously, the actual dimensions of the manipulators will be determined by motion parameters (for example, angle of rotation) of hinge elements. The calculations performed show that to a large extent the condition and, consequently, the operability of the root link are determined by the axial load. The proposed studies allow us to assess the danger of such a load and give recommendations on the design of the manipulator, taking into account the properties of the elastic hinge and the size of the links. This will prevent monotonous departure from the considered equilibrium positions or fluctuations increasing in scope over time.
Keywords:
robot, manipulator, stability, link, energy, inclination, constructionReferences
- Ardashov A.A., Sasunkevich A.A., Sof’in A.P., Fedorova L.A. Trudy Voenno-kosmicheskoi akademii imeni A.F.Mozhaiskogo, 2018, no. 660, pp. 130-137.
- Sasunkevich A.A., Sof’in A.P., Fedorova L.A. Trudy Voenno-kosmicheskoi akademii imeni A.F.Mozhaiskogo, 2017, no. 656, pp. 170-175.
- Stognii M.V., Shcheglov G.A. XLV Akademicheskie chteniya po kosmonavtike, posvyashchennye pamyati akademika S.P. Koroleva i drugikh vydayushchikhsya otechestvennykh uchenykh — pionerov osvoeniya kosmicheskogo prostranstva: sbornik tezisov. Moscow, Izd-vo MGTU im. N.E. Baumana, 2021, pp. 352-353.
- Trofimova G.N., Popova L.V. Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya «Informatika i tekhnologii. Innovatsionnye tekhnologii v promyshlennosti i informatike» («MNTK FTI-2017»): sbornik trudov. Moscow, Moskovskii tekhnologicheskii universitet, 2017, pp. 186-188.
- Efimova P.A. Protsessy upravleniya i ustoichivost’, 2015, vol. 2, no. 1, pp. 173-179.
- Glumov V.M., Rutkovskii V.Yu. Materialy XIV Mezhdunarodnoi nauchnoi konferentsii «Ustoichivost’ i kolebaniya nelineinykh sistem upravleniya (konferentsiya Pyatnitskogo)», Moscow, Institut problem upravleniya im. V.A. Trapeznikova RAN, 2018. pp. 112-115.
- Nurakhmetov B.K., Sartaev K.Z., Myrzagel’dieva Zh.M., Zhumasheva Zh.T. Izvestiya vysshikh uchebnykh zavedenii. Tekhnologiya tekstil’noi promyshlennosti, 2017, no. 5 (371), pp. 189-195.
- Kulakov F.M., Alferov G.V., Efimova P.A. Vestnik Permskogo universiteta. Matematika. Mekhanika. Informatika, 2019, no. 4(47), pp. 34-43. DOI: 10.17072/1993-0550-2019-4-34-43
- Masanov Zh.K. Nurakhmetov B.K., Sartaev K.Z., Myrzagel’dieva Zh.M. Mezhdunarodnaya nauchno-prakticheskaya konferentsiya «Povyshenie kachestva obrazovaniya, sovremennye innovatsii v nauke i proizvodstve»: sbornik trudov. Prokop’evsk, Kuzbasskii gosudarstvennyi tekhnicheskii universitet im. T.F. Gorbacheva, 2016, pp 157-159.
- Odnokurtsev K.A., Vlasevskii A.A., Lukin P.A. Trudy MAI, 2013, no. 66. URL: https://trudymai.ru/eng/published.php?ID=40286
- Baikov A.E. Trudy MAI, 2015, no. 80. URL: https://trudymai.ru/eng/published.php?ID=56951
- Kim N.V., Chebotarev Yu.S. XXI Mezhdunarodnaya konferentsiya po nauke i tekhnologiyam Rossiya-Koreya-SNG: sbornik trudov. Novosibirsk, Novosibirskii gosudarstvennyi tekhnicheskii universitet, 2021, pp. 36-39.
- Blekhman I.I. Vestnik nauchno-tekhnicheskogo razvitiya, 2008, no. 3(7), pp. 2-8.
- Smirnov P.A., Yakovlev R.N. Mekhanotronika, avtomatizatsiya, upravlenie, 2019, vol. 20, no. 12, pp. 732-739. DOI: 10.17587/mau.20.732-739
- Balanev N.V., Yanov R.A. Dostizheniya nauki i obrazovaniya, 2016, no. 1(2), pp. 11-14.
- Lagranzh Zh. Analiticheskaya mekhanika (Analytical mechanics), Moscow, Gos. izd-vo tekhniko-teoreticheskoi literatury, 1950, vol. 2, 594 p.
- Lyapunov A.M. Izbrannye trudy (Selected works), Moscow, AN SSSR, 1948, 542 p.
- Andreev A.S., Peregudova O.A. Prikladnaya matematika i mekhanika, 2021, vol. 85, no. 4, pp. 469-493. DOI: 10.31857/S0032823521040020
- Chetaev N.G. Ustoichivost’ dvizheniya (Stability of movement), Moscow, Nauka, 1990, 176 p.
- Panovko Ya.G. Vvedenie v teoriyu mekhanicheskikh kolebanii (Introduction to the theory of mechanical vibrations), Moscow, Nauka, 1991, 256 p.
- Butenin N.V., Lunts Ya.L., Merkin D.R. Kurs teoreticheskoi mekhaniki. Dinamika (Course of theoretical mechanics. Dynamics), Moscow, Nauka, 1979, vol. 2, 544 p.
- Alpatov A.P. Belonozhko P.A., Belonozhko P.P. et al. Ekstremal’naya robototekhnika, 2013, vol. 1, no. 1, pp. 250-264.
Download