Investigation of the effect of rolled products in layers of aluminum-fiberglass on static and dynamic properties


DOI: 10.34759/trd-2022-124-05

Аuthors

Rabinsky L. N.*, Babaitsev A. V.**, Shesterkin P. S.***

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: rabinskiy@mail.ru
**e-mail: ar77eny@gmail.com
***e-mail: blackshoot.92@mail.ru

Abstract

The composite materials is a new invention of the material combination which can be used in the aircraft industry. The main purpose of the invention is to have the lightweight structure and anti-corrosion effect with better strength. This type of materials is hybrid because of the combination of the metal and fiberglass. The new characteristic of this hybrid material is a combination of each advantage of aluminum, steel and fiberglass. Based on previous studies, the manufacturing of aluminum-fiberglass based material must follow the concept of interlaminar for the better bonding. This work is devoted to the study of the effect of rolled products in aluminum layers of alumina-glass-reinforced plastic. In particular, the study of static and dynamic properties along and across rolled products was carried out. Aluminum alloys are the most common materials used in the aviation and space industry. These alloys have a relatively high specific strength and a lower density than steels. Consistent optimization of the design of aircraft elements in terms of reducing their weight and the simultaneous fulfillment of specified strength requirements has led to the emergence of metal-polymer composite materials. These materials have a number of advantages over aluminum alloys: lighter weight, higher specific strength, crack resistance. Aluminum fiberglass plastics developed in Russia in the Russian-language literature are called SIAL. Over the past few years, a large number of works have been devoted to the study of materials of this type including in relation to the modeling of large parts of aircraft structural elements. This material consists of alternating layers of aluminum alloys and fiberglass reinforced epoxy. A composite of this type is a promising, improved material with improved specific strength, damage resistance, impact resistance, and fatigue strength. Formed from several layers of aluminum alloy sheet and layers of glass-fiber-reinforced glass-fiber-reinforced-polymer (GFRP), alumino-glass-reinforced plastic behaves like an elastic-plastic material primarily due to the presence of layers of aluminum alloys, and its complex failure mechanisms are determined by its composite structure.

Keywords:

aluminum fiberglass, static properties, tensile test, dynamic properties, damping coefficient

References

  1. Senatorova O.G., Antipov V.V., Lukina N.F. et al. Tekhnologiya legkikh splavov, 2009, no 2, pp. 29–31.
  2. Serebrennikova N.Yu., Antipov V.V., Nefedova Yu.N. V Vserossiiskaya nauchno-tekhnicheskaya konferentsiya «Materialy i tekhnologii novogo pokoleniya dlya perspektivnykh izdelii aviatsionnoi i kosmicheskoi tekhniki»: sbornik trudov, Moscow, VNIIAM, 2021, pp. 43-59.
  3. Kotik H., Perez-Ipiña J. Short-beam shear fatigue behavior of fiber metal laminate (GLARE), International Journal of FatigueInt, 2017, vol. 95, pp. 236-242. DOI:10.1016/j.ijfatigue.2016.11.001
  4. Jakubczak P., Bienias J., Surowska B. Interlaminar shear strength of fibre metal laminates after thermal cycles, Composite Structures, 2018; vol. 206, pp. 876–87. DOI:10.1016/J.COMPSTRUCT.2018.09.001
  5. A. Kubit, T. Trzepiecinski, M. K Lonica, M. Hebda, M. Pytel, The influence of temperature gradient thermal shock cycles on the interlaminar shear strength of fibre metal laminate composite determined by the short beam test, Composites Part B: engineering, 2019, vol. 176. DOI:10.1016/j.compositesb.2019.107217
  6. Megahed M., Abd El-baky M.A., Alsaeedy A.M., Alshorbagy A.E. An experimental investigation on the effect of incorporation of different nanofillers on the mechanical characterization of fiber metal laminate, Composites. Part B: Engineering, 2019, vol. 176. DOI:10.1016/J.COMPOSITESB.2019.107277
  7. Sinmazçelik T., Avcu E., Bora M. Ö., Çoban O. A review: Fibre metal laminates, background, bonding types and applied test methods // Materials and Design, 2011, vol. 32 (7), pp. 3671–3685. DOI:1016/j.matdes.2011.03.011
  8. Wu, J.-M. Yang. The mechanical behavior of GLARE laminates for aircraft structures // Journal of the Minerals, Metals & Materials Society, 2005, vol. 57 (1), pp. 72–79. DOI:10.1007/s11837-005-0067-4
  9. Vogeslang L.B., Volt A. Development of Fibre Metal Laminates for Advanced Aerospace Materials, Journal of Materials Processing Technology, 2000, vol. 103. DOI:10.1016/S0924-0136(00)00411-8
  10. Antipov V.V., Dobryanskii V.N., Korolenko V.A., Lur’e S.A., Serebrennikova N.Yu., Solyaev Yu.O. Aerospace MAI Journal, 2018, vol. 25, no. 2, pp. 221-229.
  11. Carlsson L.A., Adams D.F., Pipes R.B. Experimental characterization of advanced composite materials, CRC press; 2002, 256 p.
  12. Bai S.L., Djafari V., Andr´eani M., Francois D. In situ study of shortbeam shear tests for composite materials, Composites Science and Technology, 1995, vol. 55 (4), pp. 343-348. DOI:10.1016/0266-3538(95)00077-1
  13. Rao S.S. Mechanical Vibrations. Addsion-Wesley, 2019, 912 p.
  14. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N. E. Baumana. Seriya: Mashinostroenie, 2011, S2, pp. 174-183.
  15. Proskudin O.A., Rabinskii L.N., Chan K.T. Trudy MAI, 2021, no. 120. URL: https://trudymai.ru/eng/published.php?ID=161419. DOI: 10.34759/trd-2021-120-06
  16. Kriven’ G.I., Makovskii S.V. Trudy MAI, 2020, no. 114. URL: https://trudymai.ru/eng/published.php?ID=118729. DOI: 10.34759/trd-2020-114-03
  17. Antuf’ev B.A., Sukmanov I.V. Trudy MAI, 2021, no. 116. URL: https://trudymai.ru/eng/published.php?ID=121010. DOI: 10.34759/trd-2021-116-03
  18. Prokudin O.A., Solyaev Yu.O., Babaitsev A.V., Artem’ev A.V., Korobkov M.A. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mekhanika. 2020, no. 4, pp. 260–270. DOI: 10.15593/perm.mech/2020.4.22
  19. Fridlyander I.N., Kablova E.N. Tsvetnye metally i splavy. Kompozitsionnye materialy (Non-ferrous metals and alloys. Composite materials), Moscow, Mashinostroenie, 2001, vol. II-3, 879 p.
  20. Mazaev A.V. Aviatsionnye materialy i tekhnologii, 2018, no. 1 (50), pp. 46-51. DOI: 10.18577/2071-9140-2018-0-1-46-51


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход