Fracture and deformation mechanics of polymer composites in the presence of multiple bundles of arbitrary shape under the action of dynamic loads


DOI: 10.34759/trd-2022-124-06

Аuthors

Medvedskiy A. L.1, Martirosov M. I.2*, Khomchenko A. V.2**

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. PJSC Yakovlev , 68, Leningradskiy prospect, Moscow, 125315, Russia

*e-mail: Mikhail.Martirosov@yakovlev.ru
**e-mail: khomchenkoanton@yandex.ru

Abstract

Currently, elements of structures made of polymer composite materials (PCM) are becoming increasingly important, which have a number of advantages: high specific stiffness and strength, low specific gravity, high wear resistance and fatigue resistance, as well as the ability to create unique mechanical properties depending on the requirements for the finished product, etc. With the above advantages, PCM products also have disadvantages, which include their sensitivity to damage.

To prove that the strength characteristics of PCM structures meet the certification requirements, it is necessary to carry out computational, theoretical and experimental work according to methods that allow us to show that the designed structural elements from PCM fully meet the requirements.

Such elements can be large-sized aggregates (wing and tail panels, center section panels, forkill, wing spars, stabilizer and keel), or they can be quite compact (fairings, fairing, nacelles, structural elements of mechanization).

Traditional structural metal materials, due to their stable characteristics, the duration of the period of preservation of mechanical and technological properties, provide the specified strength characteristics of the aviation structure. The level of safety provided by the PCM construction should not be lower than the level of safety provided by the metal construction.

In the work, studies were carried out to assess the impact of internal defects (damages) of the type of bundles of various sizes and locations in layered elements of structures made of polymer composite materials (PCM): a cylindrical reinforced shell, a reinforced cylindrical panel, a rectangular reinforced plate.

A technique is proposed for modeling structural elements made of PCM with defects of the type of bundles under the action of dynamic loads of various nature.

Keywords:

polymer composite materials, orthotropic reinforced shell, unsteady impacts, interlayer defects (damages)

References

  1. Golovan V.I., Dudar’kov Yu.I., Levchenko E.A., Limonin M.V. Trudy MAI, 2021, no. 110. URL: https://trudymai.ru/eng/published.php?ID=112830. DOI: 34759/trd-2020110-5
  2. Firsanov Val.V., Fam V.T., Chan N.D. Trudy MAI, 2021, no. 114. URL: https://trudymai.ru/eng/published.php?ID=118893. DOI: 34759/trd-2020-114-07
  3. Lokteva N.A., Serdyuk D.O., Skopintsev P.D., Fedotenkov G.V. Trudy MAI, 2021, no. 120. URL:https://trudymai.ru/eng/published.php?ID=161423. DOI: 34759/trd-2021-120-09
  4. Goldovskii A.A., Firsanov V.V. Trudy MAI, 2021, no. 111. URL: https://trudymai.ru/eng/published.php?ID=115122. DOI: 34759/trd-2020-111-6
  5. Semenov A.A., Karpov V.V. Inzhenerno-stroitel’nyi zhurnal, 2013, no. 13, pp. 100-106.
  6. Gorshkov A.G., Tarlakovskii D.V. Dinamicheskie kontaktnye zadachi s podvizhnymi granitsami (), Moscow, Nauka. Fizmatlit, 1995, 352 p.
  7. Abrosimov N.A., Bazhenov V.G. Nelineinye zadachi dinamiki kompozitnykh konstruktsii (), Nizhnii Novgorod, Izd-vo NNGU, 2002, 400 p.
  8. Ls-dyna keyword user’s manual volume ii material models. R:14079. URL: https://www.dynasupport.com/manuals/ls-dyna-manuals/ls-dyna-manual-r-7.0-vol-ii
  9. Hashin Z. Failure Criteria for Unidirectional Fiber Composites, Journal of Applied Mechanics, 1980, vol. 47, pp. 329-334. DOI: 1115/1.3153664
  10. Chjkang F.K., Chang K.Y. A Progressive Damage Model for Laminated Composites Containing Stress Concentration, Journal of Composite Materials, 1987, vol. 21, pp. 834-855.
  11. Puck A., Schurmann H. Failure analysis of FRP laminates by means of physically based phenomenological models, Composites Science and Technology, 2002, vol. 58, pp. 1045-1067. DOI:1016/S0266-3538(01)00208-1
  12. Sebaey T.A., Blanco N., Lopes C.S., Costa J. Numerical investigation to prevent crack jumping in Double Cantilever Beam test of multidirectional composite laminates, Composites Science and Technology, 2011, vol. 71, pp. 1587-1592. DOI:1016/j.compscitech.2011.07.002
  13. Schwer L., Teng H., Souli M. LS-DYNA Air Blast Techniques: Comparisons with Experiments for Close-in Charges, 10th European LS-DYNA Conference, 2015, Würzburg, Germany.
  14. Tabatabaei Z.S., Volz J.S. A Comparison between Three Different Blast Methods in LS-DYNA: LBE, MM-ALE, Coupling of LBE and MM-ALE, 12th International LS-DYNA Users Conference, 2012, Detroit.
  15. Johnson A.F. Modelling impact damage in composite structural elements, Chapter 14, Multiscale Modelling of Composite Materials and Systems, (eds) P. Beaumont and C. Soutis, Woodhead, Cambridge, 2005.
  16. Boyce M.C., Arruda E.M. Constitutive models of rubber elasticity: A review, Rubber Chemistry and Technology, 2000, no. 73, pp. 504-523. DOI:5254/1.3547602
  17. Medvedskiy A.L., Martirosov M.I., Khomchenko A.V., Dedova D.V. Assessment of the strength of a composite package with internal defects according to various failures criteria under the influence of unsteady load, Periodico Tche Quimica, 2020, vol. 17, no. 35, pp. 1218-1230.
  18. Medvedskiy A.L., Martirosov M.I., Khomchenko A.V., Dedova D.V. Behavior of a cylindrical reinforced carbon fiber shell under impact load, TEM Journal, 2021, vol. 10, no. 4, pp. 1597-1604.
  19. Medvedskii A.L., Martirosov M.I., Khomchenko A.V. Uchenye zapiski TsAGI, 2020, vol. 5I, no. 2, pp. 47-56.
  20. Martirosov M.I., Medvedskii A.L., Khomchenko A.V. Mekhanika kompozitsionnykh materialov i konstruktsii, 2020, vol. 26, no. 2, pp. 259-268. DOI: 33113/mkmk.ras.2020.26.02.259_268.08


Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход