Prediction of the resistance of tired threaded parts


DOI: 10.34759/trd-2022-124-09

Аuthors

Pismarov A. V.*, Kirpichev V. A., Sazanov V. P.**

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: andrei_pismarov@mail.ru
**e-mail: sazanow@mail.ru

Abstract

A method for threaded parts surface hardening is being widely employed to the fatigue strength increase. Maximal result of its application is being achieved under conditions stresses concentration with regard for the fact that destruction occurs as a rule in the places of prismatic shape violation. Thus, establishing a qualitative and quantitative relationship between static stresses and fatigue resistance of threaded parts is highly up-to-date task.

A large group of parts in assemblies and structures has stress concentrators in the form of threads. Threaded joints are highly loaded elements, which operation defines the strength and reliability of the structure as a whole. The strength of threaded parts operating under conditions of an asymmetric cycle, which average stresses are stipulated by the tightening force, depends mainly on the tensile working stresses, as well as on the strengthening treatment. In this regard, development of the technique for determining the endurance limit of the threaded part by the known residual stress diagrams as well as average stresses of the cycle using the linear elastic fracture mechanics provisions presents interest.

Based on the foregoing, the object of the study in this work is high-cycle fatigue, and the subject of study is threaded parts with residual stresses.

The purpose of the study consists in developing a technique for predicting the fatigue resistance of the threaded parts by developing a technique for assessing the relationship between the stress intensity factor (SIF) and high-cycle fatigue characteristics.

Using the graphs of the distribution of residual stresses in the cavities of threaded parts as the initial data, the nature of the SIF dependence on maximum stresses of the cycle of a hardened threaded part was determined in the work. The graph can be presented in the form of the three sections. The first section corresponds to the state when the crack edges are completely pressed against each other, that is, the fatigue crack does not open, despite the presence of cycle tensile stresses. The second section corresponds to the state when the crack opens from the inside, while the sides of the crack remain closed. The third section represents a straight line running parallel to the similar dependence of the non-hardened thread and corresponds to the scheme when the crack is fully opened. The starting point of the third section of the graph corresponds to the maximum stress.

It was found from the calculations that the criterion for the most optimal technological mode of thread manufacturing with creation herewith of a compressive residual stresses field is the stress of the transition point of the second section into the straight third section. Starting from this point, the fatigue crack opens completely.

The proposed technique for predicting the fatigue resistance of threaded parts from the standpoint of linear fracture mechanics allows predicting maximum amplitude of the cycle.


Keywords:

residual stresses, threaded parts, computer simulation, stress intensity factor, non-spreading fatigue crack, stress limit

References

  1. Zavoichinskaya E.B. Problemy mashinostroeniya i avtomatizatsii, 2016, no. 1, pp. 98-108.
  2. Pavlov V.F., Kirpichev V.A., Vakulyuk V.S. Prognozirovanie soprotivleniya ustalosti poverkhnostno uprochnennykh detalei po ostatochnym napryazheniyam (Prediction of fatigue resistance of surface-hardened parts from residual stresses), Samara, Izd-vo SNTs RAN, 2012, 125 p.
  3. Kirpichev V.A., Bukatyi A.S., Filatov A.P. et. al. Vestnik Ufimskogo gosudarstvennogo aviatsionno-tekhnicheskogo universiteta, 2011, vol. 15, no. 4 (44), pp. 81-85.
  4. Polonik E.N., Surenskii E.A., Fedotov A.A. Trudy MAI, 2017, no. 92. URL: http://trudymai.ru/eng/published.php?ID=76755
  5. Ivanov S.I., Pavlov V.F., Minin B.V. et al. Ostatochnye napryazheniya i soprotivlenie ustalosti vysokoprochnykh rez’bovykh detalei (Residual stresses and fatigue resistance of high-strength threaded parts), Samara, Izd-vo SNTs RAN, 2015, 170 p.
  6. Ivanov S.I., Grigor’eva I.V. K opredeleniyu ostatochnykh napryazhenii v tsilindre metodom snyatiya chasti poverkhnosti. Voprosy prochnosti elementov aviatsionnykh konstruktsii (To the determination of residual stresses in the cylinder by removing part of the surface. Issues of strength of elements of aircraft structures), Kuibyshev, KuAI, 1971, no. 48, pp. 179-183.
  7. Sazanov V.P., Kirpichev V.A., Vakulyuk V.S., Pavlov V.F. Vestnik Ufimskogo gosudarstvennogo aviatsionno-tekhnicheskogo universiteta, 2015, vol. 19, no. 2 (68), pp. 35-40.
  8. Dobroslavskii, A.V., Ivanov S.D. Problemy mashinostroeniya i avtomatizatsii, 2014, no. 1, pp. 120-125.
  9. Kondatenko L.A., Mironova L.I. Problemy mashinostroeniya i avtomatizatsii, 2022, no. 1, pp. 70-76. DOI: 10.52261/02346206_2022_1_70
  10. Sakhvadze G.Zh., Sakhvadze G.G. Problemy mashinostroeniya i avtomatizatsii, 2021, no. 3, pp. 56-65. DOI: 10.52261/02346206_2021_3_56
  11. Biryukov V.P. Isakov V.V., Fedotov A.Yu., Baulin D.A. Problemy mashinostroeniya i avtomatizatsii, 2020, no. 1, pp. 28-35.
  12. Saushkin M.N., Kurov A.Yu. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Fiziko-matematicheskie nauki, 2011, no. 3 (24), pp. 72-78.
  13. Sazanov V.P., Vakulyuk V.S., Mikhalkina S.A. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2014, vol. 16, no. 4, pp. 163-167.
  14. Saushkin M.N. Radchenko V.P.,. Pavlov V.F Prikladnaya mekhanika i tekhnicheskaya fizika, 2011, vol. 52, no. 2, pp. 173-182.
  15. Ivanychev D.A. Trudy MAI, 2019, no. 106. URL: https://trudymai.ru/eng/published.php?ID=105643
  16. Birger I.A. Ostatochnye napryazheniya (Residual stresses), Moscow, Mashgiz, 1963, 232 p.
  17. Radchenko V.P., Afanas’eva O.S. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: fiziko-matematicheskie nauki, 2009, no. 2 (19), pp. 264-268.
  18. Kudryavtsev P.I. Nerasprostranyayushchiesya ustalostnye treshchiny (Non-spreading fatigue cracks), Moscow, Mashinostroenie, 1982, 171 p.
  19. Pavlov V.F. Izvestiya vuzov. Mashinostroenie, 1988, no. 8, pp. 22-25.
  20. Pavlov V.F. Izvestiya vuzov. Mashinostroenie, 1988, no. 12, pp. 37-40.
  21. Kudryavtsev P.I., Morozova T.I. Razvitie ustalostnykh treshchin v stalyakh v svyazi s poverkhnostnym naklepom (Development of fatigue cracks in steels due to surface hardening), Moscow, Mashinostroenie, 1972, pp. 194-200.
  22. Troshchenko V.T., Pokrovskii V.V., Prokopenko A.V. Treshchinostoikost’ metallov pri tsiklicheskom nagruzhenii (Crack resistance of metals under cyclic loading), Kiev, Naukova Dumka, 1987, 256 p.
  23. Sazanov V.P., Pis’marov V.K., Shadrin O.M., Pilipiv E.Yu., Skachkova A.V. XXIII Vserossiiskii seminar po upravleniyu dvizheniem i navigatsii letatel’nykh apparatov: sbornik trudov. Samara, SamNTs RAN, 2021, pp. 191-196.
  24. Birger I.A., Iosilevich G.B. Rez’bovye i flantsevye soedineniya (Threaded and flange connections), Moscow, Mashinostroenie, 1990, 368 p.
  25. Shlyapnikov P.A. Trudy MAI, 2020, no. 114. URL: https://trudymai.ru/eng/published.php?ID=118911. DOI: 10.34759/trd-2020-114-08

  26. Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход