Fundamental solutions for orthotropic cylindrical shell
DOI: 10.34759/trd-2022-124-11
Аuthors
*, **, ***Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
*e-mail: PetrovIlya1998@yandex.ru
**e-mail: d.serduk55@gmail.com
***e-mail: chgpashka@gmail.com
Abstract
A circular cylindrical shell of constant thickness is considered, the side surface of which is affected by non-stationary load. The shell material has symmetry with respect to the median surface, is linearly elastic, orthotropic. The motion is described in a cylindrical coordinate system associated with the axis of the cylindrical shell. The mathematical model of the object under consideration is described using the Kirchhoff — Love hypotheses. Fundamental solutions (Green’s functions, influence functions) are constructed for a cylindrical shell of great length, as well as a cylindrical shell pivotally supported at the ends. The Green function for an orthotropic shell is a solution to the problem of the effect of an instantaneous concentrated load on the shell, modeled by the Dirac delta function. To find the influence function in the case of an unlimited cylindrical shell, expansions into exponential Fourier series in angular coordinate, the integral Laplace transform in time and the integral Fourier transform in longitudinal coordinate are used. The inverse integral Laplace transform is being performed analytically, and the original integral Fourier transform is being found using numerical methods for integrating rapidly oscillating functions. In the case of a limited cylindrical shell, expansion into double trigonometric Fourier series in the angular and longitudinal coordinates is applied, as well as the integral Laplace transform in time. The inverse integral Laplace transform in this case is performed analytically. Verification of fundamental solutions has been carried out. Examples of calculations are given. The results are presented in the form of graphs.
A new numerical-analytical fundamental solution of the dynamic problem of elasticity theory for an orthotropic elastic thin unlimited cylindrical shell is obtained, as well as an analytical fundamental solution in the case of a limited Kirchhoff-Love shell. The convergence of the solution is established. To demonstrate the realism of the constructed functions, examples of calculations for one variant of the symmetry of an elastic medium are presented. The nature of the movement of non-stationary perturbations allowed us to evaluate solutions.
Fundamental solutions open up opportunities for solving new contact and inverse problems of load identification, allow performing applied research on calculating the stress and strain levels of orthotropic shells.
Keywords:
non-stationary dynamics, orthotropic material, cylindrical shell, integral transformations, generalized functions, quadrature formulasReferences
- Bogdanovich A.E. Deformirovanie i prochnost’ tsilindricheskikh kompozitnykh obolochek pri dinamicheskikh nagruzkakh (Deformation and Strength for Cylindrical Composite Shells under Dynamic Loads), Riga, 1985, 560 p.
- Bogdanovich A.E. Nelineinye zadachi dinamiki tsilindricheskikh kompozitnykh obolochek (Non-linear Problems of Dynamics of Cylindrical Composite Shells), Riga, Zinatne, 1987, 295 p.
- Singh V.P., Dwivedi J.P., Upadhyay P.C. Non-axisymmetric dynamic response of buried orthotropic cylindrical shells under moving load, Structural Engineering and Mechanics, 1999, vol. 8, issue 1, pp. 39-51.
- Sibiryakov A.V. Dinamika sloistykh kompozitsionnykh plastin i obolochek pri impul’snom nagruzhenii (Dynamics of layered composite plates and shells under pulsed loading), Dissertation of Doctor of Technical Sciences, Moscow, 2002, 319 p.
- Xianyi Li, Yangkang Chen. Transient dynamic response analysis of orthotropic circular cylindrical shell under external hydrostatic pressure, Journal of Sound and Vibration, 2002, vol. 257(5), pp. 967-976. DOI: 10.1006/jsvi.2002.5259
- Larichev E.A., Safronov V.S., Turkin I.K. Trudy MAI, 2007, no. 27. URL: https://trudymai.ru/eng/published.php?ID=34009
- Moiseev K.A., Panov Yu.N. Trudy MAI, 2011, no. 48. URL: https://trudymai.ru/eng/published.php?ID=27514
- El’muratov S.K., Dzhakhaev A.E. Nauka i tekhnika Kazakhstana, 2013, no. 1-2, pp. 23-26.
- Karpov V.V., Semenov A.A., Kholod D.V. Trudy MAI, 2014, no. 76. URL: https://trudymai.ru/eng/published.php?ID=49970
- Firsanov V.V., Vo A.Kh. Trudy MAI, 2018, no. 102. URL: https://trudymai.ru/eng/published.php?ID=98866
- Reza Okhovat, Anders Boström. Dynamic equations for an orthotropic cylindrical shell, Composite Structures, 2018, vol. 184, pp. 1197-1203. DOI: 10.1016/j.compstruct.2017.10.034
- Lokteva N.A., Serdyuk D.O., Skopintsev P.D., Fedotenkov G.V. Trudy MAI, 2021, no. 120. URL: https://trudymai.ru/eng/published.php?ID=161423. DOI: 10.34759/trd-2021-120-09
- Korovaitseva E.A. Problemy prochnosti i plastichnosti, 2021, vol. 83, no. 2, pp. 151-159.
- D’yachenko Yu.P., Elenitskii E.Ya., Petrov D.V. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Fiziko-matematicheskie nauki, 2011, no. 2 (23), pp. 278-288.
- Kogan E.A., Yurchenko A.A. Izvestiya MGTU MAMI, 2014, vol. 4, no. 1(19). pp. 55-70.
- Rajabi M., Behzad M. Interaction of a plane progressive sound wave with anisotropic cylindrical shells, Composite Structures, 2014, vol. 116, no. 1, pp. 747-760. DOI: 10.1016/j.compstruct.2014.05.029.
- Renno J.M., Mace B.R. Calculating the forced response of cylinders and cylindrical shells using the wave and finite element method, Journal of Sound and Vibration, 2014, vol. 333, no. 21, pp. 5340-5355. DOI: 10.1016/j.jsv.2014.04.042.
- Xu X., Karami B., Janghorban M. On the dynamics of nanoshells, International Journal of Engineering Science, 2021, vol. 158. DOI: 10.1016/j.ijengsci.2020.103431.
- Ivanov S.V., Mogilevich L.I., Popov V.S. Prodol’nye volny v nelineinoi tsilindricheskoi obolochke, soderzhashchei vyazkuyu zhidkost’, Trudy MAI, 2019, no. 105. URL:http://trudymai.ru/eng/published.php?ID=104003
- Nushtaev D.V., Zhavoronok S.I., Klyshnikov K.Yu., Ovcharenko E.A. Trudy MAI, 2015, no. 82. URL: http://trudymai.ru/eng/published.php?ID=58589.
- Karpov V.V., Semenov A.A., Kholod D.V. Trudy MAI, 2014, no. 76. URL: http://trudymai.ru/eng/published.php?ID=49970.
- Grigorenko Y.M., Grigorenko A.Y. Static and dynamic problems for anisotropic inhomogeneous shells with variable parameters and their numerical solution (review), International Applied Mechanics, 2013, vol. 49, no. 2, pp. 123-193. DOI: 10.1007/s10778-013-0558-x.
- Marchuk M.V., Tuchapskii R.I. Dynamics of Geometrically Nonlinear Elastic Nonthin Anisotropic Shells of Variable Thickness, International Applied Mechanics, 2017, vol. 53, no. 6, pp. 655-667. DOI: 10.1007/s10778-018-0848-4.
- Okhovat R., Boström A. Dynamic equations for an anisotropic cylindrical shell using a power series method, Civil-Comp Proceedings, 2014, vol. 106.
- Mikhailova E.Yu., Fedotenkov G.V. Nonstationary Axisymmetric Problem of the Impact of a Spherical Shell on an Elastic Half-Space (Initial Stage of Interaction), Mechanics of Solids, 2011, vol. 46, no. 2, pp. 239–247. DOI: 10.3103/S0025654411020129.
- Tarlakovskii D.V., Fedotenkov G.V. Two-Dimensional Nonstationary Contact of Elastic Cylindrical or Spherical Shells, Journal of Machinery Manufacture and Reliability, 2014, vol. 43, no. 2, pp. 145–152. DOI: 10.3103/S1052618814010178.
- Tarlakovskii D.V., Fedotenkov G.V. Nonstationary 3D Motion of an elastic Spherical Shell, Mechanics of Solids, 2015, vol. 50, no. 2, pp. 208-217. DOI: 10.3103/S0025654415020107
- Mikhailova E.Yu., Tarlakovskii D.V., Fedotenkov G.V. The impact of liquid filled concentric spherical shells with a rigid wall, Shell Structures: Theory and Applications, 2017, vol. 4, pp. 305-308. DOI: 10.1201/9781315166605-68.
- Mikhailova E.Yu., Tarlakovskii D.V., Fedotenkov G.V. Transient contact problem for liquid filled concentric spherical shells and a rigid barrier, Proceedings of the First International Conference on Theoretical, Applied and Experimental Mechanics, 2019, pp. 385-386. DOI: 10.1007/978-3-319-91989-8_92.
- Vahterova Y.A., Fedotenkov G.V. The inverse problem of recovering an unsteady linear load for an elastic rod of finite length, Journal of Applied Engineering Science, 2020, vol. 18, no. 4, pp. 687–692. DOI:10.5937/jaes0-28073
- Fedotenkov G.V., Tarlakovsky D.V., Vahterova Y.A. Identification of non-stationary load upon Timoshenko beam, Lobachevskii Journal of Mathematics, 2019, vol. 40, no. 4, pp. 439–447. DOI:10.1134/S1995080219040061
- Okonechnikov A.S., Tarlakovski D.V., Ul’yashina A.N., Fedotenkov G.V. Transient reaction of an elastic half-plane on a source of a concentrated boundary disturbance, IOP Conference Series: Materials Science and Engineering, 2016, vol. 158, no 1, pp. 012073. DOI:10.1088/1757-899X/158/1/012073.
- Okonechnikov A.S., Tarlakovsky D.V., Fedotenkov G.V. Transient Interaction of Rigid Indenter with Elastic Half-plane with Adhesive Force, Lobachevskii Journal of Mathematics, 2019, vol. 40, no. 4, pp. 489-498. DOI: 10.1134/S1995080219030132.
- Yui Gu, Zemskov A.V., Tarlakovskii D.V. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mekhanika, 2021, no. 3, pp. 48–57. DOI: 10.15593/perm.mech/2021.3.05
- Vestyak A.V., Zemskov A.V., Tarlakovskii D.V. Model’ nestatsionarnogo izgiba uprugodiffuzionnoi balki Bernulli-Eilera na vinklerovskom osnovanii, Mekhanika kompozitsionnykh materialov i konstruktsii, 2021, vol. 27, no. 1. DOI: 10.33113/mkmk.ras.2021.27.01.110_124.08
- Dech G. Rukovodstvo k prakticheskomu primeneniyu preobrazovaniya Laplasa i Z-preobrazovanii (Guide to the Practical application of Laplace and Z-transforms), Moscow, Nauka, 1971, 288 p.
- Gorshkov A.G., Medvedskii A.L., Rabinskii L.N., Tarlakovskii D.V. Volny v sploshnykh sredakh (Waves in Continuous Media Study guide: for universities), Moscow, FIZMATLIT, 2004, 472 p.
- Bakhvalov N.S., Zhidkov N.P., Kobel’kov G.M. Chislennye metody (Numerical Methods), Moscow, Nauka, 1975, 630 p.
- Ambartsumyan S.A. Obshchaya teoriya anizotropnykh obolochek (General theory of anisotropic shells), Moscow, Nauka, 1974, 448 p.
Download