Standards and technologies of short-range wireless communication networks


DOI: 10.34759/trd-2022-124-14

Аuthors

Letfullin I. R.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: L.ilgam@ya.ru

Abstract

The article discusses the main technologies and standards for wireless data transmission, provides an overview and comparative analysis of short-range wireless technologies («last 100 meters» technology), and also discloses some technical characteristics. The advantages and disadvantages are shown. For the analysis of near-radius technologies, a method for comparing parameters was chosen based on information from domestic and foreign literature, scientific articles and publications. The analysis contributes to the selection of the most optimal wireless data transmission standard for organizing an efficient near-range network aimed at solving the main problem of Internet of Things devices — ensuring the secure connection of a large number of devices with limited power deployed over a wide area and meeting the performance criteria of the Internet of Things.

Currently, short-range wireless communication is based mainly on Bluetooth, UWB, ZigBee and Wi-Fi standards, which are based on IEEE 802.15.1, 802.15.3, 802.15.4 and 802.11a/b/g/ah standards, respectively. The specified IEEE standards define physical (PHY) and MAC levels for wireless communication in a range of about 10-100 meters.

Based on the review, it can be concluded that 802.11ah is the most promising next-generation Wi-Fi technology for large-scale applications of the Internet of Things with low power consumption, which combines support for high data transfer rates over long distances, low power consumption, low latency, and thanks to built-in mechanisms such as RAW, TWT and TIM, significantly reduces collisions when accessing the channel, and also provides the required QoS.

It is also important to note that wireless technologies are changing rapidly following the needs of the Internet of Things market and it is recommended to monitor updates to existing standards and technologies, as well as the emergence of new short-range technologies.

The requirements for power consumption of devices, data transmission security, high network fault tolerance, the ability of devices to withstand radio interference and ease of connection remain unchanged.

Keywords:

Internet of Things, wireless networks, 802.15.4, 802.15.3, ZigBee, Z-Wave, 802.11, Bluetooth Low Energy, NFC, Wi-Fi HaLow, Wireless USB, 6LoWPAN

References

  1. Anikin. A. Besprovodnye tekhnologii, 2011, no. 4 (25), pp. 6-12.
  2. Dubrovin V.S., Kolesnikova I.V. Elektronika i informatsionnye tekhnologii, 2009, no. 2 (7), pp. 19.
  3. Kolybel’nikov A.I. Trudy MFTI, 2012, vol. 4, no. 2 (14), pp. 3-29.
  4. Lyakh M.Yu., Semenov O.B. Zhurnal Technology@Intel, 2003. URL: http://www.cs.vsu.ru/~kas/doc/infonets/infonets08_3.pdf
  5. Obzor steka protokola Z-Wave. Biblioteka umnogo doma Alekseya Rovdo. URL: http://www.rovdo.com/z-wave-stack
  6. Prazdnik k nam prikhodit: GKRCh rasshirila ISM-diapazon 868MGts v dva raza. 2018. URL: https://habr.com/ru/post/425903/
  7. Rentyuk V. Control Engineering, 2018. URL: https://controleng.ru/besprovodny-e-tehnologii/putivoditel-iot-2/
  8. Setevaya infrastruktura sistemy RTLS. URL: http://www.rtlsnet.ru/technology/view/3
  9. Smirnova E.V., Proletarskii A.V. Tekhnologii sovremennykh besprovodnykh Wi-Fi setei (Technologies of modern wireless Wi-Fi networks), Moscow, MGTU im. N.E. Baumana, 2017, 446 p.
  10. Standart NB-IoT: primenenie i perspektivy. 2019. URL: https://wireless-e.ru/gsm/nb-iot/standart-nb-iot/
  11. Talaev A.D., Borodin V.V. Trudy MAI, 2018, № 99 URL: http://trudymai.ru/eng/publoshed.php?ID=91985
  12. Finogeev A.G. Besprovodnye tekhnologii peredachi dannykh dlya sozdaniya sistem upravleniya i personal’noi informatsionnoi podderzhki. URL: http://window.edu.ru/resource/177/56177/files/62331e1-st18.pdf
  13. Frolov A.A. T-comm: telekommunikatsii i transport. 2012. T. 6. № 9. S. 144-148.
  14. Shevtsov V.A., Borodin V.V., Krylov M.A. Trudy MAI, 2016, no. 85. URL: http://trudymai.ru/published.php?ID=66417
  15. Carles Gomez, Joaquim Oller, Josep Paradells. Overview and Evaluation of Bluetooth Low Energy: An Emerging Low-Power Wireless Technology, Sensors, 2012, vol. 12 (9), pp. 11734 — 11759. DOI:10.3390/s120911734
  16. Gee Keng Ee, Chee Kyun Ng. et al. A Review of 6LoWPAN Routing Protocols, Proceedings of the Asia-Pacific Advanced Network 30, 2010. DOI:10.7125/APAN.30.11
  17. IEEE 802.15.4 −2020. IEEE Standard for Low-Rate Wireless Networks. URL: https://standards.ieee.org/standard/802_15_4-2020.html
  18. IEEE Standard for Local and metropolitan area networks. Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 3: Physical Layer (PHY) Specification for Low-Data-Rate, Wireless, Smart Metering Utility Networks, IEEE Computer Society, 2012. URL: ieeexplore.ieee.org/document/6190698
  19. Jonas Olsson. 6LoWPAN demystified. Texas Instruments, 2014. URL: https://www.ti.com/lit/wp/swry013/swry013.pdf
  20. Karunakar Pothuganti, Anusha Chitneni. A Comparative Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi, 2014. URL: https://www.researchgate.net/profile/Nicole-Angelyn-Lopez/publication/309669667/
  21. Le Tian, Serena Santi, Amina Seferagic. Wi-Fi HaLow for Internet of Things: An up-to-date survey on 802.11ah research, Journal of Network and Computer Applications, 2021, vol. 182 (6). URL: https://www.researchgate.net/figure/Existing-research-on-TIM-Segmentation_tbl5_350047434 k 802.11 ah2016
  22. Marco Centenaro, Lorenzo Vangelista, Andrea Zanella, and Michele Zorzi. Fellow Long-Range Communications in Unlicensed Bands: the Rising Stars in the IoT and Smart City Scenarios, IEEE Wireless Communications, 2015, vol. 23 (5), DOI:10.1109/MWC.2016.7721743
  23. Martin Wooley. Bluetooth Core Specification Version 5.0. Feature Enhancements. URL: https://www.bluetooth.com/bluetooth-resources/bluetooth-5-go-faster-go-further/
  24. Nicole Angelyn T. Lopez, John Ryan B. Pasaoa, Justin A. Parado, Joshua O. Morales. A Comparative Study of Thread Against ZigBee Z-Wave Bluetoothand Wi-Fi as a Home-Automation Networking Protocol, 2016. DOI:10.13140/RG.2.2.36693.22249
  25. The Differences BetweenZ-Wave Versions Made Easy. URL: https://wltd.org/posts/the-differences-between-z-wave-versions-made-easy
  26. Weiping Sun, Munhwan Choi, Sunghyun Choi. IEEE 802.11 ah: A Long Range 802.11 WLAN at Sub 1GHz, Journal of ICT Standardization, 2013, vol.1 (1). DOI:10.13052/jicts2245-800X.115
  27. What is Bluetooth mesh? URL: https://support.bluetooth.com/hc/en-us/articles/360049491971-What-is-Bluetooth-mesh
  28. Wireless Universal Serial Bus Specification, 2005. URL: https://studylib.net/doc/18886786/wireless-universal-serial-bus-specification?


  29. Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход