Software complex of algorithms for autonomous determination of the angular orientation parameters of unmanned aerial vehicles


DOI: 10.34759/trd-2022-124-17

Аuthors

Ermakov P. G.*, Gogolev A. A.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: pavel-ermakov-1998@mail.ru
**e-mail: kirbizz8@yandex.ru

Abstract

The article «Software complex of algorithms for autonomous determination of the angular orientation parameters of unmanned aerial vehicles» by P.G.Ermakov and A.A.Gogolev compares three approaches used for an Attitude and Heading Reference System (AHRS), namely Mahony, Madgwick and Complementary filters.

For attitude determination on UAV’s board widely used a magnetic and inertial measurement unit (MIMU). MIMU consists of a 3-axis MEMS gyroscope, accelerometer and magnetometer. The accelerometer measures the acceleration of a UAV, the gyrosocope measures the angular rate of a moving object, and the magnetometer measures the Earth’s magnetic field.

So, Mahony uses a proportional and integral controller to correct the gyroscope bias, Madgwick uses the gradient-descent algorithm. Both approaches use a quaternion representation, which a four-dimensional complex number representing the orientation of an object. A Complementary filter is proposed that combines accelerometer output for low frequency attitude estimation with integrated gyroscope output for high frequency estimation. Madgwick obtains better heading orientation than Mahony and Complementary AHRS approach in respect of the root mean square error (RMSE) of the Euler angles when compared to the motion capture system.

Keywords:

fusion algorithms, simulation modelling, unmanned aerial vehicle, magnetometers, accelerometers, gyros, Mahony filter, Madgwick filter, Complementary filter

References

  1. Ermakov P.G., Gogolev A.A. Trudy MAI, 2021, no. 117. URL: http://trudymai.ru/eng/published.php?ID=156253. DOI: 10.34759/trd-2021-117-11
  2. Jussi Collin. MEMS IMU carouseling for ground vehicles, IEEE Transactions on Vehicular Technology, 2014, no. 64 (6). DOI: 10.1109/TVT.2014.2345847
  3. Pengfei Gui, Liqiong Tang, Subhas Mukhopadhyay. MEMS Based IMU for Tilting Measurement: Comparison of complementary and Kalman filter based data fusion, 10th Conference on Industrial Electronics and Applications (ICIEA), June 2015. DOI: 10.1109/ICIEA.2015.7334442
  4. Kalman R.E. A new approach to linear filtering and prediction problems, Journal of Basic Engineering, 1960, vol. 82 (1), pp. 35-45. DOI:10.1115/1.3662552
  5. Linnik Yu.V. Metod naimen’shikh kvadratov i osnovy matematiko-statisticheskoi teorii obrabotki nablyudeniin (), Moscow, Fizmatgiz, 1962, 349 p.
  6. Nikulin M.S. Otnosheniya pravdopodobiya kriterii. Matematicheskaya entsiklopediya (), Moscow, Sovetskaya entsiklopediya, 1984, vol. 4, pp 151- 1216.
  7. Volkov V.A., Kudryavtseva I.A. Trudy MAI, 2016, no. 89. URL: https://trudymai.ru/eng/published.php?ID=73405
  8. Robert E. Mahony, T.Hamel, Jean — Michel Pfimlin. Nonlinear Complementary Filters on the Special Orthogonal Group, IEEE Transactions on Automatic Control, July 2008, vol. 53 (5), pp. 1203-1218. DOI: 10.1109/TAC.2008.923738
  9. Sebastian O.H. Madgwick. An efficient orientation filter for inertial and inertial/magnetic sensor arrays, April 30, 2010. URL: https://x-io.co.uk/res/doc/madgwick_internal_report.pdf
  10. Simone A. Ludwig. Optimization of Control Parameter for Filter Algorithms for Attitude and Heading Reference Systems, IEEE Congress on Evolutionary Computation (CEC), July 2018. DOI: 10.1109/CEC.2018.8477725
  11. Thibaud Michel, Hassen Fourati, Pierre Genevès, Nabil Layaïda. A Comparative Analysis Estimation for Pedestrian Navigation with Smartphones, International Conference on Indoor Positioning and Indoor Navigation, October 2015. DOI: 10.1109/PIN.2015.7346767
  12. Ivanchenko A.Ya. Trudy MAI, 2013, no. 66. URL: https://trudymai.ru/eng/published.php?ID=40821
  13. Gogolev A.A., Gorobinskii M.A. Trudy MAI, 2018, no. 101. URL: https://trudymai.ru/eng/published.php?ID=97029
  14. Sebastian O.H. Madgwick, Andrew J.L. Harrison, Ravi Vaidyanathan. Estimation of IMU and MARG orientation using a gradient descent algorithm, 2011 IEEE International Conference on Rehabilitation Robotics Rehab Week Zurich, ETH Zurich Science City, Switzerland, June 29 — July 1, 2011, pp. 179 — 185
  15. Fil’tr Madzhvika. 2015. URL: https://habr.com/ru/post/255661/
  16. Donghwan Kim, Jeffrey A. Fessler. Generalizing the optimized gradient method for smooth convex minimization, SLAM Journal on Optimization, 2016, vol. 28(2). DOI: 10.1137/17m112124x
  17. Efimov E.N., Shevgunov T.Ya. Trudy MAI, 2012, no. 51. URL: https://trudymai.ru/eng/published.php?ID=29159
  18. Parag Narkhede, Shashi Poddar, Rahee Walambe, George Ghinea, Ketan Kotecha. Cascaded Complementary Filter Architecture for Sensor Fusion in Attitude Estimation, Sensors, 2021, vol. 21(6). DOI: 10.3390/s21061937
  19. Zo M’o Nain, Shchagin A.V., Le Vin’ Tkhang, Khtin Linn U. Inzhenernyi vestnik Dona, 2020, no. 3. URL: http://www.ivdon.ru/uploads/article/pdf/IVD_7__2_Zaw_MyoNaing_Shchagin.pdf_6749b2a99a.pdf
  20. Relationship Between Euler — Angle Rates and Body — Axis Rates. URL: http://www.stengel.mycpanel.princeton.edu/Quaternions.pdf
  21. Buch G., Rambo Dzh., Dzhekobson A. Yazyk UML. Rukovodstvo pol’zovatelya (), Moscow, DMK Press, 2007, 496 p.
  22. StarUML — The Open Source UML/MDA Platform. URL: https://staruml.io/
  23. MTI User Manual. MTI 10 — series and MTI 100 — series 5th Generation. URL: https://www.xsens.com/hubfs/Downloads/usermanual/MTi_usermanual.pdf
  24. Gomes L.L., Leal L., Oliveira T.R., Cunha J.P.V.S., Revoredo T.C. Unmanned Quadcopter Control Using a Motion Capture System, IEEE Latin America Transactions, 16 December 2016. DOI: 10.1109/TLA.2016.7786340
  25. Masiero A., Fissore F., Antonello R., Cenedese A. A Comparison of UWB and Motion Capture UAV Indoor Positioning, The International Archives Of The Photogrammetry, Remote Sensing And Spatial Informational Sciences, 2019. DOI: 10.5194/isprs-archives-XLII-2-W13-1695-2019
  26. Delameare M., Duval F., Boutteau R.. A New Dataset of People Flow in an Industrial Site with UWB and Motion Capture Systems, Sensors, 2020, vol. 20 (16). DOI: 10.3390/s20164511



Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход