Theoretical study of hydrogen degradation processes of drop impact erosion of structural materials


DOI: 10.34759/trd-2022-125-10

Аuthors

Sha M. 1*, Sun Y. 2**

1. Northwestern Polytechnical University, 710072, 127, West Youyi Road, Beilin District, Xi'an Shaanxi, P.R.China
2. Hangzhou Xiaoshan Technician College, Department of Mechanical Engineering, Hangzhou City, 311200, People’s Republic of China

*e-mail: shamg2020@nwpu.edu.cn
**e-mail: 544974488qq.com

Abstract

The unique physical and chemical properties of hydrogen and its practically unlimited resources on our planet in the composition of water make it possible to rely on hydrogen energy systems in the development of energy [1,2]. Industrial products, components and assemblies, structural elements, as a rule, operate in aggressive hydrogen-containing media (corrosive, erosive). Rain erosion damage, caused by repeated droplet impact on wind turbine blades, is a major cause for concern, even more so at offshore locations with larger blades and higher tip speeds. Hydrogen, penetrating into the metal of the product and being absorbed in it, changes the chemical composition, structure, and also redistributes the fields of internal stresses. These processes, generalized by the term «degradatio», prepare and stimulate the development of microdiscontinuities of various scales.

At the moment, despite intensive research, hydrogen degradation is still an unsolved problem of metal physics, theoretical and practical materials science. It is known that the maximum destructive effect of hydrogen is observed when hydrogen has maximum diffusion mobility and activity, that is, at the stage of unsteady diffusion. Moreover, as the author notes, destruction under the influence of diffusion-mobile hydrogen is little predictable and most dangerous due to the high diffusion mobility of hydrogen and the ability to redistribute under the influence of various physical fields, and there is also uncertainty about the magnitude of the critical concentration of hydrogen in the destruction zone. Since during the electrification of the working fluid, the surface of the working blades is exposed to electrophysical phenomena, conditions appear for increasing the absorption of hydrogen by metal, including in a diffusion-mobile form. These conclusions about the significant impact on the damage to the blades of the flood are consistent with the conclusions. Based on the above qualitative assessments of the process of the impact of a stream of wet steam with charged droplets on the blade material, it is obvious that the magnitude of the negative effect on electrical processes depends mainly on the magnitude of the ion current in the space of the flow part.

Keywords:

Construction, experiment, erosion, drops, modeling

References

  1. Okorokova N.S., Pushkin. K.V. Trudy MAI, 2012, no. 51. URL: https://trudymai.ru/eng/published.php?ID=29175
  2. Okorokova N.S., Pushkin K.V., Sevruk S.D., Farmakovskaya A.A. Aerospace MAI Journal, 2011, vol. 18, no. 3, pp. 65-73.
  3. Beczek M., Ryżak M., Mazur R., Sochan A., Polakowski C., Bieganowski A. Influence of slope incline on the ejection of two-phase soi splashed material, PLoS ONE, 2022, vol. 17(1). URL: https://doi.org/10.1371/journal.pone.0262203
  4. Beczek M., Ryżak M., Sochan A., Mazur R., Polakowski C., Bieganowski A. A new approach to kinetic energy calculation of two-phase soil splashed material, Geoderma, 2021, vol. 396. URL: https://doi.org/10.1016/j.geoderma.2021.115087
  5. Domenech L., García-Peñas V., Šakalyte A., Francis D. P., Skoglund E., Sánchez F. Top coating anti-erosion performance analysis in wind turbine blades depending on relative acoustic impedance. Part 2: Material characterization and rain erosion testing evaluation, Coatings, 2020, vol. 10(8). URL: https://doi.org/10.3390/COATINGS10080709
  6. Germoso C., Sánchez F., Domenech L., Cortés E., Falcó A., Chinesta, F. Analysis of liquid impact phenomena affecting rain erosion failure in wind turbine blades. A viscoelastic parametric study, In ECCM 2018 — 18th European Conference on Composite Materials, 2020. URL: https://pimm.artsetmetiers.fr/index.php/en/node/324
  7. Hussain A., Singh G., Gill, H. S. Explicit dynamic modeling of epoxy resin against the water drop impact, In Materials Today: Proceedings, 2021, vol. 48, pp. 1460–1467. URL: https://doi.org/10.1016/j.matpr.2021.09.229
  8. Kaore A.N., Kale U.B., Yerramalli C.S., Raval H.K. Fatigue life prediction of epoxy coating on composites subjected to waterdrop impact // In ICCM International Conferences on Composite Materials, 2019.
  9. Kyriazis N., Koukouvinis P., Gavaises M. Modelling cavitation during drop impact on solid surfaces, Advances in Colloid and Interface Science, 2018, vol. 260, pp. 46–64. URL: https://doi.org/10.1016/j.cis.2018.08.004
  10. Lardier N., Roudier P., Clothier B., Willmott G. R. High-speed photography of water drop impacts on sand and soil, European Journal of Soil Science, 2019, vol. 70 (2), pp. 245–256. URL: https://doi.org/10.1111/ejss.12737
  11. Lv D., Lian Z., Liang L., Zhang Q., Zhang T. Study on dynamic erosion behavior of 20# steel of natural gas gathering pipeline, Advances in Materials Science and Engineering, 2019. URL: https://doi.org/10.1155/2019/6030734
  12. Slot H., Matthews D., Schipper D., van der Heide E. Fatigue-based model for the droplet impingement erosion incubation period of metallic surfaces, Fatigue and Fracture of Engineering Materials and Structures, 2021, vol. 44(1), pp. 199–211. URL: https://doi.org/10.1111/ffe.13352
  13. Blanter M.S., Golovin I.S., Golovin S.A. et al. Mekhanicheskaya spektroskopiya metallicheskikh materialov (Mechanical spectroscopy of metallic materials), Moscow, MIA, 1994, 256 p.
  14. Levin D.M., Chukanov A.N., Muravleva L.V. Issledovanie povrezhdaemosti trubnyh stalej po effektam neuprugoj relaksacii (Study of Tube Steel Damageability by Inelastic Relaxation Effects) Vestnik Tambovskogo universiteta, 1998, vol. 3, no. 3, pp. 315-318.
  15. Muravleva L.V. Mekhanizmy vliyaniya plasticheskoi deformatsii i navodorozhivaniya na relaksatsionnye yavleniya v Fe-C splavakh (Mechanisms of Influence of Plastic Deformation and Hydrogenation on Relaxation Phenomena in Fe-C Alloys), Doctor’s thesis, Tula, TPI, 1998, 168 p.
  16. Izvol’skii V. V, Sergeev N. N. Korrozionnoe rastreskivanie i vodorodnoe okhrupchivanie armaturnykh stalei zhelezobetona povyshennoi i vysok—oi prochnosti (Corrosion cracking and hydrogen embrittlement of reinforcing steels of reinforced concrete of high and high strength), Tula, Izd-vo Tul’skogo pedagogicheskogo universiteta, 2001, 163 p.
  17. Chukanov A.N. Fiziko-mekhanicheskie zakonomernosti formirovaniya predel’nogo sostoyaniya i razvitiya lokal’nogo razrusheniya v metallicheskikh materialakh (Physical and mechanical laws of formation of limiting state and development of local fracture in metallic materials): Doctor’s thesis, Tula, TulGU, 2001, 39 p.
  18. Neuimin V.M. Energetik, 2021, no. 10, pp. 8-12.
  19. Tatarinova N.V. Matematicheskoe modelirovanie teplofikatsionnykh turboustanovok dlya resheniya zadach povysheniya energeticheskoi effektivnosti raboty TETs (Mathematical modeling of turbo generators for solving problems of increasing the energy efficiency of HPCs): doctor’s thesis, Ekaterinburg, 2014. 24 p.
  20. Tatarinova N.V. Suvorov D.M. Nadezhnost’ i bezopasnost’ energetiki, 2015, no. 4 (31), pp. 53-56.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход