Construction basic principles of communication systems based on unmanned aerial vehicles


DOI: 10.34759/trd-2022-125-16

Аuthors

Anan’ev A. V.1*, Ivannikov K. S.2, Filatov S. V.3

1. PC SPE “Polet”, 1, Komsomolskaya sq., Nizhny Novgorod, 603950, Russia
2. Joint-stock company “Scientific and production enterprise “Radar-mms”, 37, Novosel'kovskaya str., lit. A, Sankt-Peterburg, 197375, Russia
3. Air force academy named after professor N.E. Zhukovskii and Y.A. Gagarin, Voronezh, Russia

*e-mail: sasha303_75@mail.ru

Abstract

The research object in the article is air communication element: a communication system based on unmanned aerial vehicles, the relevance of which is justified in the previous works of the authors. However, despite the variety of related studies conducted, there are a fundamental questions number, without answering which it is impossible to understand the essence of creating a communication system based on unmanned aerial vehicles and determine its final purpose. So, on the one hand, unmanned aerial vehicles are an extremely important resource, in practice, which will always be in short supply. Therefore, talking about a full-fledged independent communication system based on unmanned aerial vehicles is very doubtful. On the other hand, there are very striking examples of the practical use of unmanned aerial vehicles as communications repeaters.

It is only clear that the main condition for creating a communication system based on unmanned aerial vehicles is its organic inclusion in the overall communication system. Given the above, the subject of research article are the principles of creating a communication system based on unmanned aerial vehicles.

Accordingly, the article purpose is to develop them based on a generalization of the existing backlog on known and promising technical and organizational and technical solutions in the field of communications.

In the interests of developing the principles, first of all, the general scientific method was used, which consists in systematizing the existing knowledge, as well as the universal method — the method of analysis.

The result of the work is a generalized list of principles for building a communication system based on unmanned aerial vehicles.

A number of principles are formed in the development of the previously existing ones. At the same time, new principles are proposed: reasonable self-sufficiency, current interaction and evolutionary creation, etc.

The developed principles can be used as the basis for practical work on building a communication system based on unmanned aerial vehicles and are the starting point for the formation of its technical appearance.

Keywords:

communication system, unmanned aerial vehicle, construction principles

References

  1. Kopytko V.K., Sheptura V.N. Vestnik akademii voennykh nauk, 2011, no. 3 (36), pp. 88-94.
  2. Meshalkin V.A., Savitskii O.K. Tekhnika radiosvyazi, 2021, no. 15, pp. 65-76.
  3. Chernysh A.Ya., Popov V.V. Voennaya mysl’, 2019, no. 9, pp. 47-54.
  4. Makarenko S.I., Ivanov M.S. Setetsentricheskaya voina — printsipy, tekhnologii, primery i perspektivy (), Saint Petersburg, Naukoemkie tekhnologii, 2018, 898 p.
  5. Likhachev A.M., Abramovich A.V., Prisyazhnyuk A.S. Informatsiya i kosmos, 2016, no. 2, pp. 6-21.
  6. Blonskii Yu.P., Shmakov E.A., Glebov V.V. Materialy Vserossiiskoi konferentsii s mezhdunarodnym uchastiem, posvyashchennoi 75-letiyu Pobedy v Velikoi Otechestvennoi voine: sbornik trudov, Omsk, Omskii gosudarstvennyi tekhnicheskii universitet, 2020, pp. 146-151.
  7. Samartsev N.S., Kolotilov E.D., Koshelev B.V. Trudy MAI, 2017, no. 93. URL: https://trudymai.ru/eng/published.php?ID=80448
  8. Gurevich O.S., Kessel’man O.G., Trofimov A.S., Chernyshov V.I. Trudy MAI, 2017, no. 94. URL: https://trudymai.ru/eng/published.php?ID=81143
  9. Talaev A.V., Borodin V.V. Trudy MAI, 2018, no. 99. URL: https://trudymai.ru/eng/published.php?ID=91985
  10. Borodin V.V., Petrakov A.M., Shevtsov V.A. Trudy MAI, 2016, no. 87. URL: https://trudymai.ru/eng/published.php?ID=69735
  11. Borodin V.V., Petrakov A.M., Shevtsov V.A. Trudy MAI, 2018, no. 100. URL: https://trudymai.ru/eng/published.php?ID=93398
  12. Shevtsov V.A., Borodin V.V., Krylov M.A. Trudy MAI, 2016, no. 85. URL: https://trudymai.ru/eng/published.php?ID=66417
  13. Borodin V.V., Petrakov A.M. Trudy MAI, 2015, no. 80. URL: https://trudymai.ru/eng/published.php?ID=57035
  14. Borodin V.V., Petrakov A.M., Shevtsov V.A. Trudy MAI, 2015, no. 81. https://trudymai.ru/eng/published.php?ID=57894
  15. Rossiiskii samolet spetsnaznacheniya Tu-214R. URL: https://topwar.ru/14558-rossiyskiy-samolet-specnaznacheniya-tu-214r
  16. Samolety-dolgozhiteli: Il-20M i Il-20RT. URL: https://topwar.ru/79467-samolety-dolgozhiteli-il-20m-i-il-20rt.html
  17. EC-130H Compass Call. URL: http://www.airwar.ru/enc/spy/ec130h.html
  18. Samolet Boing RC-135 V/W «Rivet Dzhoint». URL: https://warfor.me/samolet-boing-rc-135-v-w-rivet-dzhoynt
  19. Zvezdnoe skoplenie. Samolet dal’nego nablyudeniya i tseleukazaniya E-8 J-STARS/ URL: https://topwar.ru/22593-zvezdnoe-skoplenie-samolet-dalnego-nablyudeniya-i-celeukazaniya-e-8-j-stars.html
  20. «Poseidonov» skoordiniruet «Minotavr»: total’naya protivolodochnaya oborona SShA stanovitsya umnee i opasnei. URL: https://topwar.ru/99433-poseydonov-skoordiniruet-minotavr-totalnaya-protivolodochnaya-oborona-ssha-stanovitsya-umnee-i-opasney.html
  21. ATR 72MP (ASW). URL: http://www.airwar.ru/enc/sea/atr72asw.html/
  22. «Novella» morskogo okhotnika: kak Il-38N ishchet vrazheskie podlodki. URL: https://news.rambler.ru/other/36566287-novella-morskogo-ohotnika-kak-il-38n-ischet-vrazheskie-podlodki/
  23. Verba V.S. Aviatsionnye kompleksy radiolokatsionnogo dozora i navedeniya. Sostoyanie i tendentsii razvitiya (), Moscow, Radiotekhnika, 2008, 432 p.
  24. Il-86VKP. Novyi oboronnyi zakaz. URL: https://dfnc.ru/katalog-vooruzhenij/spetsialnaya-aviatsiya/il-86vkp
  25. «Samolet Sudnogo dnya» Boeing E-4B. URL: https://topwar.ru/171418-vozdushnye-komandnye-punkty-boeing-e-4b-specsredstvo-dlja-rukovodstva-ssha.html
  26. Selezenev N.V., Vergelis N.I., Vorontsov A.V., Shaurov B.E., Margarit O.V. Patent na izobretenie RU 2680008 C1, 14.02.2019.
  27. Arslanbekov I.R., Menyaelo A.N., Fedorov A.E., Evtikhov K.A., Bortnikov V.V. Patent na izobretenie RU 2537798 C1, 10.01.2015.
  28. Anan’ev A.V., Erzin I.Kh., Filatov S.V., Shcherbakov A.A. Voennaya mysl’, 2017, no. 4, pp. 26-34.
  29. Anan’ev A.V., Afanas’ev A.L., Zmii B.F., Kashchenko G.A. III Vserossiiskaya NPK «Aviator»: sbornik statei, Voronezh, VUNTs VVS «VVA», 2016, vol. 2, pp. 15-20.
  30. Anan’ev A.V., Kashchenko G.A. I Vserosiiskaya NPK «Avionika»: sbornik statei. Voronezh, VUNTs VVS «VVA», 2016, pp. 16-21.
  31. Anan’ev A.V., Zmii B.F., Kashchenko A.G. I Vserossiiskaya nauchno-prakticheskaya konferentsii «Avionika». Aktual’nye voprosy sostoyaniya, ekspluatatsii, i razvitiya kompleksov bortovogo REO vozdushnykh sudov, problemy podgotovki spetsialistov: tezisy dokladov Voronezh, VUNTs VVS «VVA», 2016, pp. 22-26.
  32. Adzhemov S.S., Chirov D.S. Telekommunikatsii, 2016, no. 7, pp. 25-31.
  33. Leonov A.V., Chaplyshkin V.A. Omskii nauchnyi vestnik, 2015, no. 3 (143), pp. 297-301.
  34. Syzrantsev G.V. Teoreticheskie i nauchno-metodicheskie osnovy obespecheniya postroeniya slozhnykh organizatsionno-tekhnicheskikh sistem voennoi svyazi v lokal’nykh voinakh i vooruzhennykh konfliktakh (), Saint Petersburg, VAS, 2017, 180 p.
  35. Ermishyan A.G. Teoreticheskie osnovy postroeniya sistem voennoi svyazi v ob«edineniyakh i soedineniyakh. Chast’ 1. Metodologicheskie osnovy postroeniya organizatsionno-tekhnicheskikh sistem voennoi svyazi (), Saint Petersburg, VAS, 2005, 740 p.
  36. Anan’ev A.V., Stafeev M.A., Filatov S.V. Vozdushno-kosmicheskie sily. Teoriya i praktika, 2017, no. 3, pp. 75-84.
  37. Mikhalev O.A., Galimov A.F. Nauchno-prakticheskaya konferentsiya «Perspektivy razvitiya i primeneniya kompleksov s BLA»: tezisy doklada, Kolomna, 2016, pp. 180-187.
  38. Anan’ev A.V., Stafeev M.A., Makeev E.V. Trudy MAI, 2019, no. 105. URL: https://trudymai.ru/eng/published.php?ID=104223
  39. Anan’ev A.V., Zmii B.F., Kashchenko G.A. Radiotekhnika, 2016, no. 8, pp. 46-49.
  40. Anan’ev A.V., Fedchenko V.S., Filatov S.V. Voennaya mysl’, 2017, no. 9, pp. 43-50.
  41. Anan’ev A.V., Kashchenko G.A. Trudy mezhdunarodnoi nauchno-tekhnicheskoi konferentsii «Ekstremal’naya robototekhnika», Saint Petersburg AP4PRINT, 2016, pp. 98-103.
  42. Mukhizi S., Ateya A.A., Mutkhanna A.S., Kirichek R.V. Elektrosvyaz’, 2019, no. 4, pp. 26-31.
  43. Strel’nikov D., Sidorov A., Mgimov Yu. Zarubezhnoe voennoe obozrenie, 2018, no. 4, pp. 52-59.
  44. Anan’ev A.V., Filatov S.V., Rybalko A.G. Voennaya mysl’, 2019, no. 4, pp. 26–32.
  45. Anan’ev A.V., Filatov S.V. IV Vserossiiskaya NPK «Aviator»: sbornik statei, Voronezh, VUNTs VVS «VVA», 2017, pp. 3-6.
  46. Anan’ev A.V., Sorokin S.A., Prikota A.V. Svidetel’stvo o gosudarstvennoi registratsii programmy dlya EVM № 2016662509, 11.11.2016.
  47. Anan’ev A.V., Petrenko S.P., Filatov S.V. Voennaya mysl’, 2019, no. 1, pp. 74–82.
  48. Anan’ev A.V., Kashchenko G.A. Sovremennynaukoemkie tekhnologii, 2016, no. 9 (chast’ 1), pp. 9-12.
  49. Budko P.A., Risman O.V. Mnogourovnevyi sintez informatsionno-telekommunikatsionnykh sistem. Matematicheskie modeli i metody optimizatsii (), Saint Petersburg, VAS, 2011, 476 p.
  50. Anan’ev A.V., Erzin I.Kh., Stafeev M.A. Fundamental’nye issledovaniya, 2016, no. 12 (chast’ 2), pp. 251-255.
  51. Anan’ev A.V., Erzin I.Kh., Stafeev M.A., Fedyunin P.A. Spetsial’naya tekhnika, 2017, no. 2, pp. 7-10.
  52. Anan’ev A.V., Kashchenko G.A. Materialy XXV natsional’noi konferentsii po iskusstvennomu intellektu s mezhdunarodnym uchastiem (KII-2016), Smolensk, Universum, 2016, pp. 141-148.
  53. Kureichik V.V., Kureichik V.M., Skoroletov P.V. Izvestiya RAN. Teoriya i sistemy upravleniya, 2008, no. 4, pp. 12-18.
  54. Analizator fazovogo shuma R&S® Rohde&Schwarz. Seriya kontrol’ i izmereniya. 2016, — 15 p.
  55. AnanevA.V., PrikotaA.V. The automated synthesis of microminiature multiresonator sensors of signalsstructure frequency analysis in simone circuit designer system, Journal of Physics: Conference Series, 2019, pp. 12002.
  56. Anan’ev A.V., Katrusha A.N. Antenny, 2017, no. 8, pp. 45-52.
  57. Anan’ev A.V., Katrusha A.N. Zhurnal radioelektroniki, 2017, no. 11. URL: http://jre.cplire.ru/jre/nov17/7/text.pdf
  58. Anan’ev A.V. Katrusha A.N., Gorovoi A.V., Ivanov E.A. Antenny, 2019, no. 2, pp. 39-44
  59. Anan’ev A.V., Katrusha A.N. T-Comm: Telekommunikatsii i transport, 2017, no. 10, pp. 4-9.
  60. Dou Z., Zhong X., Zhang W. Radar-Communication Integration Based on MSK-LFM Spread Spectrum Signal, International Journal of Communications, Network and System Sciences, 2017, vol. 10, pp. 108-117. DOI: 10.4236/ijcns.2017.108B012
  61. Liu F., Zhou L., Li Masouros et al. Toward Dual-functional Radar-Communication Systems: Optimal Waveform Design, IEEE Transactions on Signal Processing, 2018, vol. 66 (16), pp. 4264-4279. DOI:10.1109/TSP.2018.2847648
  62. Yao Y., Wu L. Cognitive Waveform Design for Radar-Communication Transceiver Networks, Journal of advanced transportation, 2018, DOI: 10.1155/2018/4182927
  63. Zheng Le, Lops Marco et al. Radar and Communication Co-existence: an Overview. URL: https://arxiv.org/pdf/1902.08676.pdf
  64. Anan’ev A.V., Goncharenko V.I., Lyutin V.I. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2018, no. 7, pp. 428-445.
  65. Anan’ev A.V., Lyutin V.I. Materialy XVII Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii «Radiolokatsiya navigatsiya svyaz’», Voronezh, 2011, pp. 184-194.
  66. Afanas’ev A.L., Garmonov A.V. Nauchno-tekhnicheskaya konferentsiya «Svyaz’ i telekommunikatsii — innovatsionnoe razvitie regionov», Voronezh, 2011. URL: http://www.govvrn.ru/wps/cm/connect/voronezh/avo/main/authorities/otherexecutive+power/machinery+of+administration5/stat290320111454
  67. Anan’ev A.V., Bagdasaryan A.S., Kashchenko G.A., Kashchenko A.G. Trudy NIIR, 2017, no. 2, pp. 2-6.
  68. Anan’ev, A.V. Bagdasaryan A.S., Kashchenko G.A., Kashchenko A.G. X Mul’ti konferentsiya po problemam upravleniya (MKPU-2017): sbornik trudov, Gelendzhik, Yuzhnyi Federal’nyi universitet, 2017, pp. 163-166.
  69. Perepelkin D.A. Radiotekhnika, 2015, no. 5, pp. 46-54.
  70. Shuvalov V.P., Varaksina I.Yu. T-Comm: Telekommunikatsii i transport, 2014, no. 1(8), pp. 29-32.
  71. Anan’ev A.V., Koziratskii Yu.L., Koziratskii A.Yu. et al. Patent 2334937 RF, MPK F41G 7/30, 27.09.2008
  72. Anan’ev A.V., Filatov S.V. Voennaya mysl’, 2017, no. 2, pp. 72-78.
  73. Ananev A.V., Ivannikov K.S. Risk-model for communication net-works operation stability assessment, Journal of Physics: Conference Series, 2021. DOI:10.1088/1742-6596/1902/1/012028

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход