LPWAN standards for mobile nodes' group interaction

Systems, networks and telecommunication devices


Аuthors

Talaev A. D.*, Borodin V. V.**

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: sa128sha@yandex.ru
**e-mail: doc_bor1@mail.ru

Abstract

The rapid development of IOT requires creation of group interaction networks. For large sensor networks creation, LPWAN networks (NB-IoT, LoRa, Bluetooth mesh, ZigBee) may be employed. Thus, a flexible adaptive structure of these standards can ensure enhanced reliability by additional nodes and alternative routes.

Group interaction allows the sensors to perform a distributed task solution.

The networks of group interaction possesses the following features:

– High-speed adaptive mechanisms;

– Sufficient distance to ensure the connectivity of the sensor network to each other and Peer-to-peer structure;

– Reduced power consumption due to limited resources of a node and sensors ability to transmit data for a long time without loss, as it is important for successful group processing.

Promising is application of standards such as LoRa, Bluetooth mesh and ZigBee for those operating on unlicensed frequencies.

Standards LoRa allows deploying large networks with the star topology, which is convenient for providers. On the other hand, the standard Bluetooth mesh allows building distributed Peer-to-peer networks and providing distributed processing of sensors data.

It is necessary to account for the possible movement of nodes in the network and their speed. For ZigBee, the time necessary for a node to enter the network may be several seconds. A restriction on the number of hops in the network exists as well.

The use of existing Wi-Fi standards or cellular systems does not allow deployment of sensors networks of group interaction with sufficient energy efficiency and relatively low costs as LPWAN networks.

Keywords:

LPWAN, IoT, Industrial IoT, NB-IoT, LoRa, Bluetooth Mesh, ZigBee, group interaction

References

  1. Tihvinskij V., Koval’ V., Bochechka G. Pervaya milya, 2017, no. 2 (63), pp. 26 – 32.

  2. Alekseev V. Besprovodnye tekhnologii, 2017, vol. 1, no. 46, pp. 44 – 50.

  3. Sheshalevich V. Security, 2017, no. 3, pp. 6 – 16.

  4. Motlagh N. H., Taleb T., Arouk O. Low-Altitude Unmanned Aerial Vehicles-Based Internet of Things Services: Comprehensive Survey and Future Perspectives, IEEE Internet of Things Journal. New Jersey, US: IEEE, 2016, pp. 899 – 922.

  5. Terent’ev M.N. Trudy MAI, 2017, no. 94, available at: http://trudy.mai.ru/eng/published.php?ID=81149

  6. Ronzhin A.L., Vu D.K., Nguen V.V., Solenaya O.Ya. IV vserossiiskii nauchno-prakticheskii seminar “Bespilotnye transportnye sredstva s elementami iskusstvennogo intellekta”. Trudy seminara. Kazan’, 2017, pp. 183 – 192.

  7. Kumaritova D.L., Kirichek R.V. Informatsionnye tekhnologii i telekommunikatsii, 2016, vol. 4, no. 4, pp. 33 – 48.

  8. Dubkov I.S., Stashevskii P.S., Yakovina I.N. Reshenie prakticheskikh zadach na baze tekhnologii interneta veshchei (Solution of practical problems based on technology internet of things), Novosibirsk, Izd-vo NGTU, 2017, 80 p.

  9. LoRaWAN White Papers, available at: https://www.lora-alliance.org/lorawan-white-papers

  10. Vejlgaard B. et al. Coverage and Capacity Analysis of Sigfox, LoRa, GPRS, and NB-IoT, 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), IEEE, 2017, pp. 1 – 5.

  11. Butusov A. LoRaWAN protiv NB-IoT: sravnenie standartov, available at: https://iot.ru/promyshlennost/lorawan-protiv-nb-iot-sravnenie-standartov

  12. Bekmagambetova Zh.M. et al. Vestnik Kazakhskoi akademii transporta i kommunikatsii im. M. Tynyshpaeva, 2017, vol. 2, no. 101, pp. 164 – 170.

  13. Adelantado F. et al. Understanding the Limits of LoRaWAN, IEEE Communications Magazine, 2017, vol. 55, no. 9, pp. 34 – 40.

  14. Starichikhin M.G., Grafova N.S., Khrapov S.D., Latipov O.O. Sovremennye tendentsii razvitiya nauki i tekhnologii, 2016, no. 12 – 4, pp. 76 – 78.

  15. Narrowband Internet of Things, available at: https://www.rohde-schwarz.com/ru/applications/white-paper_230854-314242.html

  16. Sinha R.S., Wei Y., Hwang S.-H. A survey on LPWA technology: LoRa and NB-IoT, ICT Express. Elsevier, 2017, vol. 3, no. 1, pp. 14 – 21.

  17. Mesh Profile Bluetooth, Specification Revision: v1.0 (13.07.2017), available at: https://www.bluetooth.com/specifications/mesh-specifications

  18. Trifonova S.V., Kholodov Ya.A. Komp’yuternye issledovaniya i modelirovanie, 2012, vol. 4, no 4, pp. 855 – 869.

  19. Besprovodnye seti ZigBee i Thread, available at: http://www.wless.ru/technology/?tech=1

  20. Borodin V.V., Petrakov A.M., Shevtsov V.A. Trudy MAI, 2016, no. 87, available at: http://trudymai.ru/eng/published.php?ID=69735


Download

mai.ru — informational site MAI

Copyright © 2000-2021 by MAI

Вход