Analysis of the direction pattern of a flat multi-element active phased array


DOI: 10.34759/trd-2022-125-17

Аuthors

Teplikova V. I.1, Sentsov A. A.2*, Nenashev V. A.2**, Polyakov V. B.2

1. JSC «Kotlin-Innovator», Saint Petersburg, Russia
2. Saint Petersburg State University of Aerospace Instrumentation, 67, Bolshaya Morskaya str., Saint Petersburg, 190000, Russia

*e-mail: toxx@list.ru
**e-mail: nenashev@guap.ru

Abstract

The article presents a study of a technique for correcting distortions in the radiation pattern parameters caused by the mutual effect of radiators, on the example of a rectangular active phased antenna array with the following number of radiators: 64 in the azimuthal plane, and 8 in the elevation plane. The authors considered the dependence of the main characteristics of the directional diagram on the beam deflection while electron scanning and the change in the strength of the electromagnetic field during the cosine-square amplitude distribution forming on the pedestal. The nature of the dependencies is determined and a technique is proposed for controlling the distortions of the characteristics occurring while the beam deflection. This technique realization will allow correcting the directional pattern, having distortions due to the changes in mutual effect of radiators, obtaining the required characteristics of active phased antenna array, and implement operation modes, which require keeping the antenna array parameters unchanged.

The following initial data is necessary when developing an algorithm: the number of rays, minimum scanning step, and the beam setting accuracy. As long as the result of this algorithm realization represents a data array, it is necessary to pay special attention account for the minimum memory size required for the initial data storage for the algorithm.

This technique realization allows correcting parameters of the directional pattern, which contains distortions due to changes in the mutual effect of radiators, to obtain the required the APAA characteristics. Its application allows employing the radar operating modes, which require keeping the antenna array parameters unchanged.

Keywords:

radiation pattern, phased antenna array, distortion correction, modeling, multi-element antenna

References

  1. Bestugin A.R., Kirshina I.A., Ryzhikov M.B., Svanidze V.G. Computational-oriented mathematical model of direct and inverse target direction finding characteristics in airborne weather radar based on multi-channel phased antenna array, Proceedings of the 2019 Antennas Design and Measurement International Conference, ADMInC 2019, pp. 62-66. DOI: 10.1109/ADMInC47948.2019.8969115
  2. Sentsov A.A., Ivanov S.A., Nenashev S.A., Turnetskaya E.L. Classification and Recognition of Objects on Radar Portraits Formed by the Equipment of Mobile Small-Size Radar Systems, Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), 2020, pp. 1–4. DOI: 10.1109/WECONF48837.2020.9131475
  3. Polyakov V.B., Ignatova N.A., Sentsov A.A. Multi-Criteria Selection of the Radar Data Compression Method, 2021 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), 2021, pp. 1-4. DOI: 10.1109/WECONF51603.2021.9470755
  4. Novikova Y.A., Ryzhikov M.B. Research of requirements for the antenna pattern of the airborne weather radar to the reduce of false detection of hazards turbulence areas in low-altitude flight conditions, Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), 2020, pp. 1–4. DOI: 10.1109/WECONF48837.2020.9131533
  5. Ryzhikov M.B., Kryachko A.F., Svanidze V.G. Measurement of angular coordinates of point targets in the onboard weather navigation radar based on a multi-channel phased antenna array with an assimetic pattern, Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), 2020, pp. 1–4. DOI: 10.1109/WECONF48837.2020.9131533
  6. Vendik O.G., Parnes M.D. Antenny s elektricheskim skanirovaniem (Antennas with electric scanning), Moscow, Sains-Press, 2002, 232 p.
  7. Kocherzhevskii G.N., Erokhin G.A., Kozyrev N.D. Antenno-fidernye ustroistva (Antenna-feeder devices), Moscow, Radio i svyaz’, 1989, 352 p.
  8. Verba B.C., Tatarskii B.G., Il’chuk A.R. et al. Radiolokatsionnye sistemy aviatsionno-kosmicheskogo monitoringa zemnoi poverkhnosti i vozdushnogo prostranstva (Radar systems of aerospace monitoring of the Earth’s surface and airspace), Moscow, Radiotekhnika, 2014, 576 p.
  9. Verba B.C. Aviatsionnye kompleksy radiolokatsionnogo dozora i navedeniya. Printsipy postroeniya, problemy razrabotki i osobennosti funktsionirovaniya (Aviation complexes of radar surveillance and guidance. Principles of construction, problems of development and features of functioning), — Moscow, Radiotekhnika, 2014, 525 p.
  10. Dudnik P.I., Kondratenkov G.S., Tatarskii B.G. et al. Aviatsionnye radiolokatsionnye kompleksy i sistemy (Aviation radar complexes and systems), Moscow, Izd-vo VVIA im. prof. N.E. Zhukovskogo, 2006, 1112 p.
  11. Parshutkin A.V., Levin D.V., Galandzovskii A.V. Informatsionno-upravlyayushchie sistemy, 2020, no. 6, pp. 22–31.
  12. Richard Klemm, Ulrich Nickel, Christoph Gierull, Pierfrancesco Lombardo, Hugh Griffiths and Wolfgang Koch (Eds.). Novel Radar Techniques and Applications, Real Aperture Array Radar, Imaging Radar, and Passive and Multistatic Radar, SciTech Publishing, 2017, vol. 1, 952 p.
  13. Luchkov N.V. Avtomatizirovannye sistemy upravleniya, 2015, no. 1 (39), pp. 21-26.
  14. Nenashev V.A., Sergeev M.B., Sentsov A.A., Grigoriev E.K. Triple-Station System of Detecting Small Airborne Objects in Dense Urban Environment, Smart Innovation, Systems and Technologies, Singapore, 2021, vol. 238, pp. 83-93. URL: https://doi.org/10.1007/978-981-16-2765-1_7
  15. Kondratenkov G.S., Frolov A.Yu. Radiotekhnika, 2004, no. 1, pp. 47–49.
  16. Bhattacharyya S. et al. Recent Trends in Signal and Image Processing, Singapore, Springer, 2019, 224 p.
  17. Richard Klemm (ed.). Novel Radar Techniques and Applications. Vol. 2. Waveform Diversity and Cognitive Radar, and Target Tracking and Data Fusion, London, Scitech Publishing, 2017, 553 p.
  18. Blaunshtein N.Sh., Sergeev M.B., Shepeta A.P. Prikladnye aspekty elektrodinamiki (Applied aspects of electrodynamics), Saint Petersburg, Agraf+, 2016, 272 p.
  19. Blaunstein N., Christodoulou C., Sergeev M. Introduction to Radio Engineering, CRC Press, Boca Raton, FL, USA, 2016, 286 p.
  20. Shepeta A.P., Nenashev V.A. Accuracy characteristics of object location in a two-position system of small onboard radars, Information and Control Systems, 2020, no. 2(105), pp. 31-36. DOI: 10.31799/1684-8853-2020-2-31-36
  21. Generalov A.G., Gadzhiev E.V., Salikhova M.R.. Trudy MAI, 2019, no. 106. URL: https://trudymai.ru/eng/published.php?ID=105685
  22. Lunev E.M., Neretin E.S., Dyachenko S.A. Dubrovo A.I. Trudy MAI, 2016, no. 86. URL: http://trudymai.ru/eng/published.php?ID=66366
  23. Dyachenko S.A. Trudy MAI, 2018, no. 99. URL: http://trudymai.ru/eng/published.php?ID=91966
  24. Zvonarev V.V., Moroz A.V., Sherstyuk A.V. Trudy MAI, 2019, no. 106. https://trudymai.ru/eng/published.php?ID=105683

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход