Theoretical aspects of the formation of a cluster of small spacecraft
DOI: 10.34759/trd-2022-125-19
Аuthors
*, *, *Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia
*e-mail: vka@mil.ru
Abstract
The article discusses the theoretical aspects of the substantiation of the ballistic structure of the cluster of small satellites. For the ballistic justification of the small satellites cluster, it is necessary to solve several interrelated tasks. First, it is necessary to justify the parameters of the orbits, the functioning of which would allow the cluster to successfully solve the target task. Secondly, after launching the small satellites into orbit, it is necessary to provide the required configuration in space, which is determined by the ballistic structure. Thirdly, due to the influence of disturbing factors acting on the small satellites while moving in orbits, the configuration will collapse over time. Therefore, the stable relative position of the small satellites in the cluster can be provided by the justification of the ballistic structure in orbits of the same radius and inclination. For the three small satellites as part of the formation implementing the tasks of radio monitoring by the difference-rangefinder method (DRM), acceptable performance indicators are achieved when the small satellites form an equilateral triangle during operation, since in this case the accuracy indicators of the DRM are optimal, while the on-board equipment also imposes restrictions on the formation in the form of minimum and maximum relative distances between satellites.
Over time, the triangle formed by three small satellites deforms, while the indicators of solving the target problem decrease.
Thus, the task is reduced to determining the set of parameters of the orbits of the small satellites cluster with a restriction on the relative position, which will ensure the maximum time functioning of three small satellites in the cluster of the required configuration.
The proposed approach to solving this problem is based on the decomposition of the problem of finding optimal parameters into two special cases, which make it possible to determine the range of acceptable variants of ballistic structures of the small satellites cluster and thereby significantly reduce the area of possible iteration when solving the optimization problem.
The analysis of the parameters of the small satellites orbits and the ballistic structures of the cluster makes it possible to ensure a stable relative position of the small satellites in space with the required periodicity. The results of solving the multiparametric problem of searching for a ballistic structure can be used at the stages of ballistic design of satellite systems consisting of clusters of small satellites.
Keywords:
small spacecraft, cluster of small spacecraft, ballistic structure, spatial configurationReferences
- Makridenko L.A., Minaev I.V., Potyupkin A.Yu. Voprosy elektromekhaniki. Trudy VNIIEM, 2014, vol. 141, № 4, pp. 17–22.
- Potyupkin A.Yu., Danilin N.S., Selivanov A.S. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy, 2017, vol. 4, no. 4, pp. 45–56. DOI 10.17238/issn2409-0239.2017.4.45.
- Klimenko N.N. Vozdushno-kosmicheskaya sfera, 2018, no. 2 (95). DOI: 10.30981/2587-7992-2018-95-2-48-57.
- Averkiev N.F., Kul'vits A.V., Zhitnikov T.A. Izvestiya Samarskogo nauchnogo tsentra RAN, 2021, vol. 21, no. 3, pp. 105–114.
- Klyushnikov V.Yu. Izvestiya vuzov. Priborostroenie, 2016, vol. 59, no. 6, pp. 423–428.
- Palkin M.V. Nauka i obrazovanie, 2015, no 8, C. 100–115.
- Guzman J.J., Edery A. Mission design for the MMS tetrahedron formation, IEEE Aerospace Conference Proceedings, 2004, vol. 1, pp. 540. DOI:10.1109/AERO.2004.1367637
- Roscoe W.T. et al. Optimal Formation Design for etospheric MultiscaleMission Using Differential Orbital Elements, Journal. Guidance, Control, and Dynamics, 2010, vol. 34, no. 4, pp. 1070-1080. DOI:10.2514/6.2010-7958
- Mashtakov Ya.V., Shestakov S.A. Preprinty IPM im. M.V.Keldysha, 2017, no. 84, 26 p. DOI:10.20948/prepr-2017-84
- Protsenko P.A., Khubbiev R.V. Trudy MAI, 2021, no. 119. URL: http://trudymai.ru/eng/published.php?ID=134557. DOI: 10.34759/trd-2021-119-18
- Saibel' A.G. Osnovy teorii tochnosti radiotekhnicheskikh metodov mestooprdeleniya (The accuracy theory fundamentals of radio engineering field methods), Moscow, Mashinostroenie, 1978, 54 p.
- Vygodskii M.Ya. Spravochnik po vysshei matematike (Higher mathematics handbook), Moscow, Nauka, 1977, 872 p.
- Vlasov S.A., Mamon P.A. Teoriya poleta kosmicheskikh apparatov (Spacecraft flight theory), Saint Prtersburg: VKA im. A.F.Mozhaiskogo, 2007, 435 p.
- Bakhtin A.A., Omel'yanchuk E.V., Semenova A.Yu. Trudy MAI, 2017, no. 96. URL: http://trudymai.ru/eng/published.php?ID=85828
- Emel'yanov A.A., Malyshev V.V., Smol'yaninov Yu.A., Starkov A.V. Trudy MAI, 2017, no. 96. URL: http://trudymai.ru/eng/published.php?ID=85921
- Vasil'kov Yu.V., Timoshenko A.V., Sovetov V.A., Kirmel' A.S. Trudy MAI, 2019, no. 108. URL: http://trudymai.ru/eng/published.php?ID=109557. DOI: 10.34759/trd-2019-108-16
- Lokhmatkin V.V. Trudy MAI, 2018, no. 100. URL: http://trudymai.ru/eng/published.php?ID=93348
- Vaganov A.A., Neelova O.N., Onufrei A.Yu. Trudy Voenno-kosmicheskoi akademii imeni A.F.Mozhaiskogo, 2019, no. 666, pp. 7-17.
- Nazarov A.E. Vestnik «NPO im. S.A. Lavochkina», 2013, no. 2(18), pp. 58–64.
- Volkov V.F., Kul'vits A.V., Kovalenko A.Yu., Salukhov V.I. Trudy SPIIRAN, 2020, no. 4(35), pp. 719-745. DOI: 10.15622/sp.2020.19.4.1.
Download