Computational and experimental study of the behavior of a flat reinforced carbon fiber panel on impact


DOI: 10.34759/trd-2022-126-04

Аuthors

Martirosov M. I., Khomchenko A. V.*

PJSC Yakovlev , 68, Leningradskiy prospect, Moscow, 125315, Russia

*e-mail: khomchenkoanton@yandex.ru

Abstract

Among the structural materials currently used in aviation technology (OT), polymer structural materials (PCM), for example, carbon fiber plastics, which have certain advantages over traditional metal materials for structural purposes, have become widespread. Among such advantages are relatively low density, high specific strength and rigidity, high wear resistance, fatigue resistance, low coefficient of thermal expansion, resistance to chemical aggressive media, damping ability. Speaking about the disadvantages of PCM, it should be noted that during the production and operation of structural elements made of such materials, defects of various types may occur, which have a serious impact on the residual strength. The level of safety of an AT created on the basis of new materials and new technologies should not be lower than the level of safety of an existing AT made of traditional structural materials (and according to traditional technologies). It is important to note that the purpose of developing new PCM is to combine various components to create materials with new specified characteristics that differ from the characteristics of the original components.

In the works [1]-[4], the behavior of structural elements made of PCM in the presence of multiple defects such as bundles of arbitrary shape, size and location under the action of non-stationary loads of various nature was previously considered.

The paper presents a numerical and experimental study of the behavior of a four-stringer flat panel made of a polymer composite material under low-speed impact.

Validation of the numerical experiment based on the results of field tests was carried out. The validation results showed that the maximum stratification area as a result of the impact differs by no more than 11%.

Keywords:

polymer composite materials, carbon fiber, flat four-stringer panel, impact, numerical study, experiment

References

  1. Medvedskiy A.L., Martirosov M.I., Khomchenko A.V., Dedova D.V. Assessment of the strength of a composite package with internal defects according to various failures criteria under the influence of unsteady load, Periodico Tche Quimica, 2020, vol. 17, no. 35, pp. 1218-1230.
  2. Medvedskiy A.L., Martirosov M.I., Khomchenko A.V., Dedova D.V. Behavior of a cylindrical reinforced carbon fiber shell under impact load, TEM Journal, 2021, vol. 10, no. 4, pp. 1597-1604.
  3. Medvedskii A.L., Martirosov M.I., Khomchenko A.V. Uchenye zapiski TsAGI, 2020, vol. LI, no. 2, pp. 47-56.
  4. Martirosov M.I., Medvedskii A.L., Khomchenko A.V. Mekhanika kompozitsionnykh materialov i konstruktsii, 2020, vol. 26, no. 2, pp. 259-268. DOI: 10.33113/mkmk.ras.2020.26.02.259_268.08
  5. Golovan V.I., Dudar’kov Yu.I., Levchenko E.A., Limonin M.V. Trudy MAI, 2021, no. 110. URL: https://trudymai.ru/eng/published.php?ID=112830. DOI: 10.34759/trd-2020-110-5
  6. Gorshkov A.G., Tarlakovskii D.V. Dinamicheskie kontaktnye zadachi s podvizhnymi granitsami (Dynamic contact problems with moving boundaries), Moscow, Nauka. Fizmatlit, 1995, 352 p.
  7. Abrosimov N.A., Bazhenov V.G. Nelineinye zadachi dinamiki kompozitnykh konstruktsii (Nonlinear problems of dynamics of composite structures), Nizhnii Novgorod, Izd-vo NNGU, 2002, 400 p.
  8. Grigoryan S.S. Dinamika udara. Razrushenie kompozitnykh materialov pri udarakh s malymi skorostyami (Fracture of composite materials in low-velocity impacts), Moscow, Mir, 1985, pp. 8-46.
  9. Ls-dyna. Keyword user’s manual. Vol 2. Ii material models. R:14079. URL: https://www.dynasupport.com/manuals/ls-dyna-manuals/ls-dyna-manual-r-7.0-vol-ii
  10. De Borst R. Numerical aspects of cohesive zone models, Engineering Fracture Mechanics, 2003, vol. 70, pp. 1743–1757. DOI:10.1016/S0013-7944(03)00122-X
  11. Yang Q.D., Cox B.N. Cohesive models for damage evaluation in laminated composites, International Journal of Fracture, 2005, vol. 133, pp. 107–137. DOI:10.1007/s10704-005-4729-6
  12. Chandra N., Scheider I., Ghomen K.H. Some issues in the application of cohesive zone models for metal-ceramic interfaces, International Journal of Solids and Structures, 2002, vol. 39 (11), p. 2827–2855. DOI:10.1016/S0020-7683(02)00149-X
  13. Millán J.S., Armendáriz I. Delamination and Debonding Growth in Composite Structures, Damage Growth in Aerospace Composites, 2015, 63–88. DOI: 10.1007/978-3-319-04004-2_3
  14. Sahoo Sushree S., Panda Subrata K., Sen Deeprodyuti. Effect of delamination on static and dynamic behavior of laminated composite plate, AIAA Journal, 2016, vol. 54, no. 8, pp. 2530-2544. DOI: 10.2514/1.J054908
  15. Firsanov Val.V., Fam V.T., Chan N.D. Trudy MAI, 2021, no. 114. URL: https://trudymai.ru/eng/published.php?ID=118893. DOI: 34759/trd-2020-114-07
  16. Lokteva N.A., Serdyuk D.O., Skopintsev P.D., Fedotenkov G.V. Trudy MAI, 2021, no. 120. URL: https://trudymai.ru/published.php?ID=161423. DOI: 34759/trd-2021-120-09
  17. Goldovskii A.A., Firsanov V.V. Trudy MAI, 2021, no. 111. URL: https://trudymai.ru/eng/published.php?ID=115122. DOI: 34759/trd-2020-111-6
  18. Semenov A.A., Karpov V.V. Inzhenerno-stroitel’nyi zhurnal, 2013, no. 13, pp. 100-106.
  19. Protasov V.D. Mekhanika konstruktsii iz kompozitsionnykh materialov. Deformirovanie i nachal’noe razrushenie sloistykh kompozitov pri udarnykh nagruzkakh (Mechanics of structures made of composite materials), Moscow, Mashinostroenie, 1992, pp. 38-61.
  20. Elizarov S.V. Mekhanika deformirovaniya i razrusheniya sloistykh kompozitov i nekotorye novye oblasti ikh primeneniya (Mechanics of deformation and fracture of layered composites and some new areas of their application), Saint Petersburg, PGUPS, 2000, 242 p.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход