Method for experimental modeling of the effect of plasma radiation from an electric rocket engine on solar cells


DOI: 10.34759/trd-2022-126-09

Аuthors

Goncharov P. S.*, Kopeyka A. L.**, Babin A. M.

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: vka@mil.ru
**e-mail: koppya252@mail.ru

Abstract

The article presents a technique for experimental modeling of the impact of plasma radiation from an electric rocket engine on solar cells. The used laboratory-experimental base and the procedure for conducting tests are described. Relationships for calculating the coefficients of degradation of the electrical characteristics of solar cells are given.

The essence of the approach of experimental modeling of the effect of plasma radiation from an electric rocket engine on solar cells is to measure: the temperature field of a solar cell, the characteristics of the plasma flow, the electrical characteristics of solar cells before and after exposure to the plasma radiation of an electric rocket engine, and to calculate the degradation coefficients of solar cells.

It is advisable to use the obtained values of the degradation coefficients in the design of spacecraft solar arrays.

The presented technique makes it possible to determine the coefficients of degradation of the electrical characteristics of solar cells when exposed to plasma radiation from an electric rocket engine, as well as to carry out studies:

— on the influence of the effect of plasma radiation from an electric rocket engine on the electrical characteristics of solar cells, depending on the parameters and modes of operation of an electric rocket engine;

— on issues of increasing the energy efficiency of an electric rocket engine by using the energy of plasma radiation by returning it to the onboard network using photoelectric or thermal converters.

The multiplicative degradation coefficient determined in the course of tests allows one to perform an estimated calculation of the power generated by a solar cell after exposure to plasma radiation from an electric rocket engine.

Keywords:

radiation, plasma, electric rocket engine, solar cell, spacecraft, degradation factor

References

  1. Gusev Yu.G., Pil’nikov A.V. Trudy MAI, 2012, no. 60. URL: https://trudymai.ru/eng/published.php?ID=35385
  2. Gorshkov O.A., Muravlev V.A., Shagaida A.A. Khollovskie i ionnye plazmennye dvigateli dlya kosmicheskikh apparatov (Hall and ion plasma engines for spacecraft), Moscow, Mashinostroenie, 2008, 280 p.
  3. Favorskii O.N., Fishgoit V.V., Yantovskii E.I. Osnovy teorii kosmicheskikh elektroreaktivnykh dvigatel’nykh ustanovok (Fundamentals of the theory of space electric propulsion systems), Moscow, Vysshaya shkola, 1978, 384 p.
  4. Morozov A.I. Plazmennye uskoriteli i ionnye inzhektory (Plasma accelerators and ion injectors), Moscow, Nauka, 1984, 269 p.
  5. Zayavlin V.R., Zhezlov A.B., Letin V.A. Geliotekhnika, 2001, no. 3, pp. 11-22.
  6. Bugrova A.N. et al. Teplofizika vysokikh temperature, 1981, vol. 19, no. 2, pp. 428-430.
  7. Askhabov S.N. et al. Kosmicheskie issledovaniya, 1988, vol. 26, no. 5, pp. 796-798.
  8. Morozov A.I. et al. IV Vsesoyuznaya konferentsiya po plazmennym uskoritelyam i ionnym inzhektoram: tezisy dokladov, Moscow, 1978, pp. 317-321.
  9. Raushenbakh G. Spravochnik po proektirovaniyu solnechnykh batarei (Handbook for the design of solar panels), Moscow, Energoatomizdat, 1983, 360 p.
  10. Sinyavskii V.V. et al. Energeticheskie ustanovki kosmicheskikh letatel’nykh apparatov (Power systems of spacecraft), Saint Petersburg, VKA imeni A.F.Mozhaiskogo, 2013, vol. 1, 169 p.
  11. Ermolaev V.I., Chilin Yu.N., Narkevich N.N. Dvigatel’nye i energeticheskie ustanovki kosmicheskikh letatel’nykh apparatov (Propulsion and power systems of spacecraft), Saint Petersburg, Tipografiya FGUP TsKB «Rubin», 2003, 585 p.
  12. Plokhikh A.P., Vazhenin N.A. Trudy MAI, 2012, no. 60. URL: https://trudymai.ru/eng/published.php?ID=35390
  13. Goncharov P.S. et al. Trudy Voenno-kosmicheskoi akademii imeni A.F.Mozhaiskogo, 2019, no. 668, pp. 216–223.
  14. GOST R MEK 60904-1-2013. Pribory fotoelektricheskie. Chast’ 1. Izmerenie vol’tampernykh kharakteristik (GOST R MEK 60904-1-2013. Photoelectric devices. Part 1. Measurement of current-voltage characteristics), Moscow, Standartinform, 2014, 15 p.
  15. GOST R 8.736-2011. Izmereniya pryamye mnogokratnye. Metody obrabotki rezul’tatov izmerenii. Osnovnye polozheniya (GOST R 8.736-2011. Multiple direct measurements. Methods for processing measurement results. Basic provisions), Moscow, Standartinform, 2013, 19 p.
  16. Kopeika A.L., Apevalov I.V., Prokhvatova I.S. XXIV Vserossiiskaya nauchno-prakticheskaya konferentsiya «Aktual’nye problemy zashchity i bezopasnosti», Saint Petersburg, Izd-vo RARAN, 2021, vol. 1, pp. 39–42.
  17. Kazeev M.N. Trudy MAI, 2012, no. 60. URL: https://trudymai.ru/eng/published.php?ID=35387
  18. Goncharov P.S. et al. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2020, no. 11, pp. 197–203.
  19. Goncharov P.S. et al. Patent 2726152 RF, 09.07.2020.
  20. Martynov V.V. et al. Izvestiya Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2021, no. 10, S. 677–681.
  21. Salmin V.V. et al. Trudy MAI, 2012, no. 60. URL: https://trudymai.ru/eng/published.php?ID=35080

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход