Investigation of disturbances from a temperature shock of a solar battery panel when simulating the rotational motion of a small spacecraft around the center of mass


DOI: 10.34759/trd-2022-126-11

Аuthors

Sedel'nikov A. V.*, Orlov D. I.**, Serdakova V. V.***, Nikolaeva A. S.****

Samara National Research University named after Academician S.P. Korolev, 34, Moskovskoye shosse, Samara, 443086, Russia

*e-mail: axe_backdraft@inbox.ru
**e-mail: grand_99v@mail.ru
***e-mail: valeriay.121@yandex.ru
****e-mail: ezhevichka333@gmail.com

Abstract

The main goal of the work is to evaluate the effect of the solar battery panel temperature deformations when a small spacecraft leaves the Earth’s shadow on the parameters of its rotational motion.

The problem lies in the transformation of a small spacecraft after the end of its active existence into space debris, which significantly complicates the successful implementation of new space projects due to the threat of collision. Currently, many methods have been developed for cleaning up space debris. One way involves towing space debris using tether systems. At the same time, the connection between the tug and space debris is not sufficiently reliable so the cable can separate from space debris under the influence of various disturbances.

One of such disturbances may be a temperature shock of the solar panel when the space debris is a small spacecraft with large elastic structural elements. The greater the mass fraction of the elastic element in the total mass of a small spacecraft, the more significant the effect of the temperature shock on the dynamics of its rotational motion.

An analysis of research by scientists from around the world shows that the temperature shock can disrupt favorable conditions for the implementation of gravity-sensitive technological processes, causing temperature fluctuations in large elastic elements, which lead to unacceptably high microaccelerations. During experiments on the International Space Station with promising solar panels of the ROSA type, temperature fluctuations were so intense that they did not allow the panels to be rolled up at the end of the experiment. In this case, the question of the controllability of a small spacecraft equipped with such solar panels already arises.

The article deals with issues related to the influence of angular acceleration from the temperature shock and a disturbing factor on the functioning of the spacecraft.

The influence of angular acceleration from the temperature shock is estimated on the basis of numerical modeling and construction of the deflection field of the plate median surface as a result of the temperature shock in the ANSYS software.

For the small «Starlink» spacecraft, the values of the angular acceleration from the temperature shock and the deflection field of the plate middle surface as a result of the temperature shock were obtained.

As a result of the research, the dependence of the angular acceleration on the temperature shock of the small «Starlink» spacecraft was obtained and the maximum value of the disturbing moment was estimated. When transporting such a small spacecraft using tether systems after the end of its active life, this disturbance must be taken into account in order to avoid the contact loss between the tether and space debris as a result of temperature shock. The results obtained can be used to analyze the possibilities of transporting space debris using tether systems.

Keywords:

temperature shock, solar panel, small spacecraft, tether system, space debris

References

  1. Kazmerchuk P.V., Vernigora L.V. Trudy MAI, 2020, no. 115. URL: https://trudymai.ru/eng/published.php?ID=119924. DOI: 34759/trd-2020-115-09
  2. Voronov K.E., Grigor’ev D.P., Telegin A.M. Trudy MAI, 2021, no. 118. URL: https://trudymai.ru/eng/published.php?ID=158245. DOI: 34759/trd-2021-118-10
  3. Aslanov V.S., Neryadovskaya D.V. Trudy MAI, 2022, no. 122. URL: https://trudymai.ru/eng/published.php?ID=163923. DOI: 34759/trd-2022-122-02
  4. Sedelnikov A.V. Evaluation of the level of microaccelerations on-board of a small satellite caused by a collision of a space debris particle with a solar panel, Jordan Journal of Mechanical and Industrial Engineering, 2017, vol. 11, no. 2, pp. 121–127.
  5. Priyant C.M., Surekha K. Review of Active Space Debris Removal Methods, Space Policy, 2019, vol. 47, pp. 194-206. DOI:10.1016/j.spacepol.2018.12.005
  6. Aslanov V.S., Ledkov A.S. Detumbling of axisymmetric space debris during transportation by ion beam shepherd in 3D case, Advances in Space Research, 2022, vol. 69, no. 1, pp. 570–580. DOI:10.1016/j.asr.2021.10.002
  7. Botta E.M., Sharf I., Misra A.K. Contact Dynamics Modeling and Simulation of Tether-Nets for Space Debris Capture, Journal of Guidance, Control, and Dynamics, 2017, vol. 40, no. 1, pp. 110-123. DOI: 10.2514/1.g000677
  8. Trushlyakov V.I., Yudintsev V.V. Rotary space tether system for active debris removal, Journal of Guidance, Control, and Dynamics, 2020, vol. 43, no. 2, pp. 354–364. DOI:10.2514/1.G004615
  9. Wang Q., Jin D., Rui X. Dynamic Simulation of Space Debris Cloud Capture Using the Tethered Net, Space: Science & Technology, 2021, vol. 2021. DOI:10.34133/2021/9810375.
  10. Sedelnikov A.V., Serdakova V.V., Glushkov S.V., Nikolaeva A.S., Evtushenko M.A. Consideration of the Initial Deformation From Natural Oscillations of Large Elastic Elements of the Spacecraft When Assessing Microaccelerations From Thermal Shock Using a Two‑dimensional Model of Thermal Conductivity, Microgravity Science and Technology, 2022, vol. 34, no. 22. DOI:10.1007/s12217-022-09938-3.
  11. Shen Z., Hu G. Thermally Induced Dynamics of a Spinning Spacecraft with an Axial Flexible Boom, Journal of Spacecraft and Rockets, 2015, vol. 52, no 5, pp. 1503–1508. DOI: 10.2514/1.A33116
  12. Sedelnikov A.V., Serdakova V.V., Khnyreva E.S. Construction of the criterion for using a two-dimensional thermal conductivity model to describe the stress-strain state of a thin plate under the thermal shock, Microgravity Science and Technology, 2021, vol. 33, no. 6. DOI:10.1007/s12217-021-09912-5.
  13. Shen Z., Tian Q., Liu X., Hu G. Thermally induced vibrations of flexible beams using Absolute Nodal Coordinate Formulation, Aerospace Science and Technology, 2013, vol. 29, pp. 386–393. DOI:10.1016/j.ast.2013.04.009
  14. Sedelnikov A.V., Orlov D.I. Development of control algorithms for the orbital motion of a small technological spacecraft with a shadow portion of the orbit, Microgravity Science and Technology, 2020, vol. 32, no. 5, pp. 941–951. DOI:10.1007/s12217-020-09822-y
  15. Belousova D.A., Serdakova V.V. Modeling the temperature shock of elastic elements using a one-dimensional model of thermal conductivity, International Journal of Modeling, Simulation, and Scientific Computing, 2020, vol. 11, no. 6, pp. 2050060. DOI:10.1142/S1793962320500609
  16. Gorozhankina A.S., Orlov D.I., Belousova D.A. Problems of development motion control algorithms for a small spacecraft for technological purpose taking into account temperature deformations of solar panels, Journal of Physics: Conference Series, 2020, vol. 1546 (1), pp. 012015. DOI:10.1088/1742-6596/1546/1/012015
  17. Orlov D.I. Modeling the Temperature Shock Impact on the Movement of a Small Technological Spacecraft, AIP Conference Proceedings, 2021, vol. 2340 (1). pp. 050001. DOI:10.1063/5.0047296
  18. Thornton E., Kim Y. Thermally induced bending vibrations of a flexible rolled-up solar array, AIAA Journal of Spacecraft and Rockets, 1993, vol. 30, no. 24, pp. 438-448.
  19. Chamberlain M.K., Kiefer S.H., Banik J.A. On-orbit structural dynamics performance of the roll-out solar array, American Institute of Aeronautics and Astronautics Spacecraft Structures Conference, 2018. DOI:10.2514/6.2018-1942.
  20. McDowell J.C. The Low Earth Orbit Satellite Population and Impacts of the SpaceX Starlink Constellation, The Astrophysical Journal Letters, 2020, vol. 892, no. 2. DOI:10.3847/2041-8213/ab8016.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход