Numerical modeling of damping coatings


DOI: 10.34759/trd-2022-126-13

Аuthors

Dinyaeva N. S., Kravtsov S. B.*, Krumlyakov S. O., Benkalyuk G. A.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: hdtv321@mail.ru

Abstract

The paper considers the development of a special device - a stand for filling flat heat pipes with a liquid coolant, as well as a method for filling them, based on controlled flow under the influence of gravity of the coolant in the internal space of heat pipes (HPs).

The coolant (coolant) used for pouring into heat pipes is pre-treated — dissolved gases are removed from it. The degassing of the coolant is carried out in order to minimize the process of oxidation of the internal metal parts of the case and the evaporative capillary-porous structure (ECS) of the HP.

In order to increase the efficiency of the process of filling experimental batches of heat pipes, reduce material and time costs, a special device is proposed - a filling stand that combines all technological operations that were carried out separately into a single technological cycle.

Degassing is carried out by ultrasonic (US) cavitation in a special container installed in an ultrasonic bath, which is an integral part of the filling stand.

The implementation of this development allows you to get a useful result, which consists in:

- saving labor costs by reducing the number of technological operations and design features of the installation;

- increasing the reliability of HP sealing associated with the possibility of visual control over the entire technological cycle of refueling;

- an increase in the depth of coolant degassing, which in turn affects the extension of the service life of filled HP;

- reducing the probability of failure of the radar by increasing the reliability of the cooling system PPM AFAR;

- possibility of production in a short time of pilot batches of HP for further research.


Keywords:

heat pipes, filling stand, ultrasonic degassing, coolant filling, transceiver module, coolant

References

  1. Avduevskii V.S., Koshkin V.K. Osnovy teploperedachi v aviatsionnoi i raketno-kosmicheskoi tekhnike (), Moscow, Mashinostroenie, 1992, 528 p.
  2. Nevokshenov A.V., Polyakov P.O., Rabinskii L.N., Solyaev Yu.O., Tushnov P.A. Patent na poleznuyu model’ RU 196690 U1, 20.03.11.
  3. Nikitin A.D., Ivliev A.S. Trudy MAI, 2022, no. 122. URL: https://trudymai.ru/eng/published.php?ID=164265. DOI: 10.34759/trd-2022-122-14
  4. Nevokshenov A.V., Shestakov O.V., Tushnov P.A. Radiotekhnika, 2021, vol. 85, no. 10, pp. 19-29. DOI: 10.18127/j00338486-202110-03
  5. Polyakov P.O., Tokmakov D.I., Goryunov R.V., Rabinskii L.N., Solyaev Yu.O. XVII Vserossiiskaya molodezhnaya nauchno-tekhnicheskaya konferentsiya «Radiolokatsiya i svyaz’ — perspektivnye tekhnologii»: sbornik trudov. Moscow, Izd-vo «Mir nauki», 2019, pp. 106-109.
  6. Polyakov P.O., Solyaev Yu.O., Rabinskii L.N., Tokmakov D.I., Smol’nikova O.N. Priemno-peredayushchii modul’ AFAR s teplootvodyashchim osnovaniem v vide ploskoi teplovoi trubki // Patent na poleznuyu model’ RU 189664 U1, 30.05.2019.
  7. Polyakov P.O., Solyaev Yu.O., Rabinskii L.N., Tokmakov D.I., Smol’nikova O.N. Patent na poleznuyu model’ RU 190821 U1, 15.07.2019.
  8. Shestakov R.S., Karipov D.M., Galimov D.R., Karipov A.L. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Metallurgiya, 2015, vol. 15, no. 3, pp. 148–153.
  9. Ginin V.N., Silina F.A., Voskresenskii S.S., Slyadneva G.M. Avtorskoe svidetel’stvo SU 1175521 A1, 30.08.1985.
  10. Gorodnov A.O., Laptev I.V. Trudy MAI, 2021, no. 116. URL: https //trudymai.ru/eng/published.php?ID=121008. DOI: 10.34759/trd-2021-116-02
  11. Dobryanskii V.N., Rabinskii L.N., Radchenko V.P., Solyaev Yu.O. Trudy MAI, 2018, no. 101. URL: https://trudymai.ru/eng/published.php?ID=98252
  12. Zhidkosti okhlazhdayushchie nizkozamerzayushchie. Obshchie tekhnicheskie usloviya GOST 28084-89 (Liquids cooling low-freezing. General specifications. GOST 28084-89), Moscow, Standartinform, 2007, 16 p.
  13. Khatuntseva O.N. Trudy MAI, 2021, no. 118. URL: https://trudymai.ru/eng/published.php?ID=158211. DOI: 10.34759/trd-2021-118-02.
  14. Vin Ko Ko, Temnov A.N. Trudy MAI, 2021, no. 119. URL: https://trudymai.ru/eng/published.php?ID=159776. DOI: 10.34759/trd-2021-119-03
  15. Krauzina M.T., Sidorov A.S., Burkova E.N. Trudy MAI, 2020, no. 114. URL: https://trudymai.ru/eng/published.php?ID=118883. DOI: 10.34759/trd-2020-114-06.
  16. Skvortsov S.P. Nauka i obrazovanie, 2015, no. 2, pp. 83-100.
  17. Fedyushkin A.I., Puntus A.A. Trudy MAI, 2018, no. 102. URL: https://trudymai.ru/eng/published.php?ID=98751
  18. Marchinskii A.S., Tuch A.V., Gromova I.N. et al. Patent na poleznuyu model’ SU 956937 A1, 05.15.1992.
  19. Morgunov Yu.A., Saushkin B.P. Additivnye tekhnologii, 2016, no. 1, pp. 30-38.
  20. Pozhalostin A.A., Goncharov D.A. Trudy MAI, 2017, no. 95. URL: https://trudymai.ru/eng/published.php?ID=84412
  21. Kazakov V.A., Senyuev I.V. Trudy MAI, 2017, no. 94. URL: https://trudymai.ru/eng/published.php?ID=81065

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход