Investigation of the accuracy parameters of a spacecraft with an adaptive autonomous navigation system


DOI: 10.34759/trd-2022-126-23

Аuthors

Golyakov A. D.*, Richnyak A. M.**, Fominov I. V.

Mlitary spaсe Aсademy named after A.F. Mozhaisky, Saint Petersburg, Russia

*e-mail: algoll949@mail.ru
**e-mail: arichnyak@mail.ru

Abstract

The paper presents the results of solving the scientific problem of synthesizing an adaptive autonomous navigation system of a spacecraft and presents the results of a study of the accuracy of determining the navigation parameters of a spacecraft under the influence of disturbing factors that can be continuous, periodic and short-term. Their manifestation is difficult to predict. The impact of disturbing factors on the on-board equipment can lead to both a gradual and a sharp decrease in the effectiveness of spacecraft target tasks due to the deterioration of technical characteristics of optical elements of star sensors, external optical elements of navigation devices, temperature-regulating coatings and electronic equipment of the autonomous navigation system, which, in turn, can cause a metrological failure of on-board measuring instrument devices. To estimate measurement errors of navigation parameters of the spacecraft, an algorithm for the operation of an autonomous navigation system has been adopted, where the zenith distances of two navigation stars and the altitude of the spacecraft above the Earth’s surface are used as primary navigation information. Simulation results are presented for the case when measurements of on-board measuring instruments contain random errors distributed exponentially. It has been shown that the disturbing factors of the outer space lead to an increase in characteristics of random errors of onboard measuring instruments and, as a consequence, to an increase in spacecraft navigation errors. The study has been carried out by modeling the process of solving the navigation problem, taking into account the impact of disturbing factors navigation parameter onboard measuring instruments. The basis for obtaining numerical estimates of the accuracy of the spacecraft autonomous navigation system is the simulation of the process of solving the navigation problem using computer technology. To process the results of navigation measurements containing unavoidable random errors, a non-recurrent weighted least squares method has been used in the work. The obtained results can be used to counteract disturbing factors of the outer space that reduce the accuracy of the spacecraft navigation and to justify adaptive and reconfigurable systems that allow autonomously to determine the parameters of the spacecraft orbit in the conditions of disturbing factors of the outer space.

Keywords:

spacecraft, autonomous navigation system, adaptive navigation system, estimation of the accuracy of navigation parameters, disturbing factors of outer space, random measurement errors, simulation modeling

References

  1. Akishin A.I., Novikov L.S. Vozdeistvie okruzhayushchei sredy na materialy kosmicheskikh apparatov (Environmental impact on spacecraft materials), Moscow, Znanie, 1983, 64 p.
  2. Malyshev V.V., Krasil’shchikov M.N., Bobronnikov V.T., Nesterenko O.P., Fedorov A.V. Sputnikovye sistemy monitoringa. Analiz, sintez i upravlenie (Satellite monitoring systems. Analysis, synthesis and management), Moscow, Izd-vo MAI, 2000, 568 p.
  3. Chumakov A.I. Deistvie kosmicheskoi radiatsii na integral’nye skhemy (The effect of cosmic radiation on integrated circuits), Moscow, Radio i svyaz’, 2004, 319 p.
  4. Antimirov V.M., Telitsyn V.V. Sistemy avtomaticheskogo upravleniya: Bortovye tsifrovye vychislitel’nye sistemy (Automatic control system: on-board digital computing systems), Moscow, Izd-vo YuRAIT, 2020, 70 p.
  5. Alekseev V.P., Kovalev A.P. Novye issledovaniya v razrabotke tekhniki i tekhnologii, 2015, no. 1, pp. 24-29.
  6. El’yasberg P.E. Opredeleniya dvizheniya po rezul’tatam izmerenii (Motion detection on measurement results), Moscow, Nauka, 1976, 416 p.
  7. Porfir’ev L.F., Smirnov V.V., Kuznetsov V.I. Analiticheskaya otsenka tochnosti avtonomnykh metodov opredeleniya orbit (Analytical evaluation of the accuracy of autonomous orbits determination method), Moscow, Mashinostroenie, 1987, 279 p.
  8. Anshakov G.P., Golyakov A.D., Petrishchev V.F., Fursov V.A. Avtonomnaya navigatsiya kosmicheskikh apparatov (Autonomous navigation of spacecraft), Samara, Gosudarstvennyi nauchno-proizvodstvennyi raketno-kosmicheskii tsentr «TsSKB-Progress», 2011, 486 p.
  9. Gerasimov A.V., Pashkov S.V., Khristenko Yu.F. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2011, no. 4 (16), pp. 70-78.
  10. Akulov O.A., Frolkov E.V., Shatunov A.V. Vestnik MGTU im. N.E. Baumana. Seriya: Priborostroenie, 2010, no. 3, pp. 94-102.
  11. Kruzhkov D.M. Trudy MAI, 2012, no. 51. URL: https://trudymai.ru/eng/published.php?ID=29146
  12. Fominov I.V. Izvestiya vuzov. Priborostroenie, 2013, vol. 56, no. 7, pp. 5-9.
  13. Golyakov A.D. Fominov I.V. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2015, vol. 14, no. 1, pp. 18-24.
  14. Linnik Yu.V. Metod naimen’shikh kvadratov i osnovy teorii obrabotki nablyudenii (Least squares method and fundamentals of the theory of observation processing). Moscow, GIFML, 1958, 334p.
  15. Musatov M.V., L’vov A.A. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta, 2009, no. 4 (43), no. 2, pp. 137-140.
  16. Mazurov B.T., Padve V.A. Vestnik Sibirskogo gosudarstvennogo universiteta geosistem i tekhnologii, 2017, vol. 22, no. 2, pp. 22-35.
  17. Ksendzov A.V., Nazarkov D.A. Aktual’nye issledovaniya. Mezhdunarodnyi nauchnyi zhurnal, 2021, no. 50 (77), pp. 29-32.
  18. Tuchin D.A. Preprinty IPM im. M.V.Keldysha, 2019, no. 7, 36 p. URL: http://library.keldysh.ru/preprint.asp?id=2019-7
  19. Koshaev D.A. Issledovanie tochnosti pozitsionirovaniya po dannym priemnikov sputnikovoi navigatsii pri razlichnykh usloviyakh radiovidiinosti sputnikov (Study accuracy positioning according to satellite navigation at various conditions radio visibility satellites), Saint Petersburg, Universitet ITMO, 2021, 18 p.
  20. Kurshin A.V. Trudy MAI, 2013, no. 66. URL: https://trudymai.ru/eng/published.php?ID=40799
  21. Mironov V.I., Mironov Yu.V., Yusupov R.M. Informatsionno-upravlyayushchie sistemy, 2011, no. 1, pp. 9-13.

Download

mai.ru — informational site MAI

Copyright © 2000-2024 by MAI

Вход